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Abstract 
In may real time applications a system needs to be 
trained quickly on a small amount of new data and then 
generalise on unseen data. This is a challenging task 
for neural networks especially when applied to difficult 
problems such as adaptive speech recognition. An 
experimental comparison between three recently 
introduced on-line adaptive connectionist paradigms 
on adaptive phoneme recognition task is presented in 
the paper. The models used are: the Evolving 
Classifying Function (ECF), the Zero Instruction Set 
Computer (ZISC) and the Deterministic Adaptive 
Random Access Memory Network (DARN). An MLP 
network, although slow and not an incremental 
learning model, was used to provide a benchmark for 
comparison. The results show that ECF adapts faster to 
new data, while  ZISC and DARN require mode data.  
 
Keywords: adaptive systems; evolving systems; 
connectionist systems; deterministic adaptive random 
memory.  
 

1. Introduction 
In this paper we investigate the behaviour of three 
recently introduced networks that are intended for use 
in applications where incremental and fast learning are 
desired. We have chosen to base our experiments on 
speech data, taken from the Otago Speech Corpus [7].  
We felt that this data set posed a difficult problem and 
to demonstrate this fact, we performed the first set of 
experiments using a multi-layer perceptron (MLP) 
network.  This network is neither incremental in its 
learning, nor fast (requiring many passes through the 
data), but it should give some sort of benchmark 
against which we may assess the other networks.  
     We begin by describing the properties of the speech 
data set and the following section describes results 
obtained using the MLP network.  The next three 
sections briefly describe the principles of the ECF 
[5,6], ZISC [8] and DARN [2].   Section 7 concludes 
with the results and a discussion of the implications. 

2. Experimental Speech Data  
The phonemes provided [8], are obtained from 6 NZ 
English speakers (3 males and 3 females). The list of 
10 NZ English vowels and their corresponding codes is 
shown in Table 1. 

The wave format data was read in as 16-bit integers. 
The sample rate was 22.050 kHz. A Hamming 
Window was used to create a matrix of 512 samples, 
equating to approximately 23.2 ms of speech. Each 
window was subsequently transformed into 25 mel-
cepstrum coefficients. The log energy was also 
included to generate 26 input features for every frame. 
Each window overlaps the previous by 50%. 
 
Table 1: New Zealand English vowels (monophthongs) 

 
The phoneme data is divided into two sets, A and B. 
The data in set A is again divided into two, one for 
training and one for testing as follows:  
- Training set A contains 4665 samples obtained from 

4 speakers (2 males and 2 females). 
- Testing set A contains 2503 samples obtained from 

new instances of the training set A. 
The data in set B is divided into two, a testing set and 
an adaptation set, which is used to demonstrate the 
incremental learning capability of these networks: 
- Testing set B (1 male and 1 female) contains 1427 

samples, which are obtained from 2 new speakers. 
- Adaptation set contains 1427 samples of training 

values for data set B. 
The ZISC neurocomputing chip only accepts up to 64 
8-bit valued input vectors. The data sets were therefore 
scaled to lie between 0 and 255 to accomplish this 
requirement. This same data was presented to the ECF 
and DARN networks and, after input normalisation, 
also used for the MLP network. 



3. Off-line learning in MLP 
Although the MLP is slow to learn, requiring many 
passes (250 in this case), it did generalize well. The 
network used here had a single hidden layer of size 60 
and a learning rate of 0.4.  Column 2, in table 2, shows 
the network’s ability to recognise its own training set.  
The results for test set A, give some idea of the 
difficulty of the task.  The results for test set B are 
even poorer, mainly because there are no samples of 
the speakers for set B in the original training set.  The 
final column shows the results of adding more training 
samples (an adaptation set) to the original training set.  
This, as expected, somewhat improves the performance 
for test set B.  Note, however, that to achieve this last 
set of results, the adaptation set must be added to the 
original training set and the network completely 
retrained, because incremental learning is not an option 
for the MLP network. 

Phonemes 
(table 1) 

Training 
set 

Test 
set A 

Test 
set B 

Adaptation 
set 

1 96 82 36 59 
2 87 68 17 63 
3 97 76 50 67 
4 91 77 27 55 
5 96 73 28 75 
6 77 33 3 33 
7 89 77 7 63 
8 94 21 18 24 
9 86 61 19 61 

10 93 60 22 58 
Over all 92 69 26 59 

Table 2: % Recognition of an MLP net on NZ Vowels 

4.The Evolving Classifying Function 
(ECF) 
The ECF [5,6] is an ECOS classification model that 
partitions a given data set into a number of classes and 
finds their class centres in the N-dimensional input 
space by "placing" a rule node. Each rule node is 
associated with a class and with an influence 
(receptive) field representing a part of the N-
dimensional space around the rule node. Usually, such 
an influence field in the N-dimensional space is a 
hyper-sphere. There are two distinct phases of the ECF 
operation. During the first, learning phase, data vectors 
are fed into the system one by one with their known 
classes. The following steps describe the learning 
sequence: 
     Step1. Input a vector from the data set and calculate 
the distances between the vector and all rule nodes 
already created.  
     Step 2: If all distances are greater than a maximum 
radius parameter Rmax, a new rule node is created. 
The position of the new rule node is the same as the 
current vector in the input data space and its radius is 
set to the min-radius parameter; return to step 1. 
     Else If there is a rule node with a distance to the 
current input vector less than or equal to its radius and 
its class is the same as the class of the new vector, 
nothing will be changed; return to step 1.  

   Else If there is a rule node with a distance to the 
input vector less than or equal to its radius and its class 
is different from those of the input vector, its influence 
field should be reduced. The radius of the new field is 
set to the larger value from the distance minus the min-
radius, and the min-radius. 
   Step 3: If there is a rule node with a distance to the 
input vector less than or equal to the Rmax, and its 
class is the same as the vector's, enlarge the influence 
field by taking the distance as the new radius if only 
such enlarged field does not cover any other rule node 
which has a different class,  
   Else create a new rule node the same way as in step 
2, and return to step 1.   
     The recall (classification phase of new input 
vectors) is performed in the following way: 
1.  If the new input vector lies within the field of one 

or more rule nodes associated with one class, the 
vector belongs to this class. 

2.  If the input vector lies within the fields of two or 
more rule nodes associated with different classes, 
the vector will belong to the class corresponding 
the closest rule node. 

3. If the input vector does not lie within any field, then 
there are two cases:  
 (a) one-of-n mode: the vector will belong to the 

class corresponding the closest rule node.  
 (b) m-of-n mode: take m highest activated by the 

new vector rule nodes, and calculate the average 
distances from the vector to the nodes with the 
same class; the vector will belong to the class 
corresponding to the smallest average distance. 

The ECF has several parameters that need to be 
optimised according to the data set used. An algorithm 
for optimisation of these parameters is presented in [6]. 

5.The Zero Instruction Set 
Computer (ZISC) 
ZISC is a parallel processing neural network that 
provides fast computing power for technology 
requiring pattern recognition and information 
classification. Each neuron is an independent 
processing element, with integrated memory and 
learning capability. The ZISC can be considered as an 
expert system that can recognize and classify objects or 
situations and take instantaneous decisions based upon 
accumulated knowledge. It learns from samples of 
data. The ZISC is a fully integrated, digital 
implementation of the Radial Basis Function (RBF) 
neural network model [8]. The ZISC learning process 
is as follows: 
   If   the input vector does not fall in any of the 

influence fields of the prototypes already stored in 
the network, THEN: a new neuron is committed.  
Its influence field is set to the minimum value 
between the Maximum Influence Field global 
parameter and the distance to the closest prototype 
of the neurons committed in the actual context. 



Else If   the input vector falls in the influence field of a 
prototype already stored in the network and their 
category matches, THEN: no change; 

Else If   the input vector falls in the influence field of a 
prototype already stored in the network but their 
category does not match, THEN: one or more 
influence fields are reduced so the adjacent neurons 
with different categories become tangent. End. 

     The reduction of the influence field, however, 
cannot go beyond a minimum defined by the Minimum 
Influence Field. As a result, the RBF space mapping 
may have prototypes with portions of their influence 
field overlapping one another. This may later cause 
some uncertain responses from the network. If the 
reduction of the influence field is decreased to the 
Minimum Influence Field global parameter, the neuron 
is labelled as "degenerated". 
     The classification process in ZISC consists of 
evaluating whether, or not an N-dimension input vector 
lies within the influence field of any prototype stored 
in the network and/or its sub-networks. This is done by 
computing the distance between the input vector and 
all stored prototypes, and comparing this distance with 
the prototype actual influence field. This operation can 
be iterated to survey all sub-networks, that is, classify 
the vector for all applicable contexts: 
   If   the input vector does not lie within any influence 
fields, THEN:  it is not recognized. 
   Else If    the input vector lies within the influence 
field of one or more prototypes associated with one 
category, THEN:  it is recognized and declared as 
belonging to that category. 
   Else If   the input vector lies within the influence 
field of two or more prototypes associated with 
different categories, THEN: it is declared as 
unidentified, that is recognized but not formally 
identified.  
   End. 

6. Deterministic Adaptive RAM 
Networks (DARN) 
The third model used here, is a type of Weightless 
Neural Network and is derived from the work of 
Aleksander [4], see Figure 1. 
 
 
 
 
  
 
 
 
 
 
 
 
Figure 1: A Weightless Neural Network 
 

The network shown is a very small one, which we 
chose merely to help with the following description. In 
a practical system, there may be many cells in each of 
several layers with 4, or even 8 address/input lines per 
cell, rather than the 2 shown here. The network appears 
pyramid shaped since the number of cells decrease as 
we move towards the output layer. If we require 
several output classes, a pyramid must be created for 
each class. However, all the pyramids share a common 
input vector. This input vector is binary and, when 
applied to a cell, behaves like an address bus.  The 
contents of an addressed location may be interpreted as 
holding zero, one, or undefined. Initially, all locations 
are undefined. In [3], the Aleksander model was 
modified, with a resulting improvement in the 
performance. The concept of an addressable-set was 
introduced. When the input/address vector selects an 
undefined location (U), the cell output propagates that 
undefined value forward to the next layer. For 
example, suppose the output from the first layer is the 
vector 1U. The output cell interprets this as having 
enabled both addressed locations 10 and 11, forming 
an addressable set, or {10, 11}. Their network model 
then has some rules governing what to do about this. 
The idea of having an addressable set together with 
some simple rules was developed further in [1]. Even 
then, however, the generalization properties of the 
WNN were still not very useful. We now describe the 
operation of the Deterministic Adaptive RAM  
Network (DARN), with respect to those earlier models. 
In the DARN, each addressed location is now a register 
instead of a single bit. Initially, all of the registers in 
the network are set to 0. The 0 value is interpreted as 
an undefined value. During training, as we shall see, a 
register's value may become positive, or negative.  
     Training - The input/address vector is presented to 
the network. The desired output of every cell in the 
pyramid is the same as the desired output of the entire 
pyramid, effectively the same as described in [3]. We 
begin at the input layer. If the desired output is one, the 
addressed location is incremented; if the desired output 
is zero, the location is decremented. The next step then 
involves calculating address vectors for the following 
layer moving towards the output. The address vector 
for the output cell, or the next layer in a larger 
network, is constructed by invoking the recall 
operation, (described below) for each cell in the 
current layer. Note that there may be undefined bits in 
those vectors. When an undefined bit is found (during 
training), it is replaced by the desired output. The 
address vector is then applied to the output cell, or the 
next layer in a larger network and the selected location 
is modified as already described for the first layer.  
     Recall - During the recall phase, the content of each 
addressed location, starting from the input layer, is 
interpreted as undefined, zero, or one depending upon 
whether the counter value is 0, negative, or positive 
respectively. Now, during recall, we should see that the 
output of a cell might produce an undefined bit. Here 
we adopt the approach used in [3], of propagating the 

R

R

Output 

Cell 

Content



addressable-set to the next layer. This may result in 
several locations being selected at the same time. 
When such an event occurs (during recall), the 
following rules are adopted - they are effectively the 
same as described in [3]:  
If at least one zero and no ones appears in the 
addressable set, the output is zero.  
Else If at least one one and no zeros appears in the 
addressable set, the output is one.  
Else the output is undefined Recall is propagated 
forward through the pyramid until the output is 
reached. End. 
The network only requires one pass through the data. 

7. Results and Discussions 
The following tables illustrate the performance of each 
of the models when tested with the speech data.  The 
main difference from the MLP, in the way these 
experiments were performed, is that the new adaptation 
training was continued from the existing network state 
having already been trained with the original training 
set.  
     The ECF network performed well (Table 5). It has 
good generalisation capability after a short adaptive 
training.  It trained rapidly, requiring only four passes 
through the data and was readily adapted to the new 
training data.  
     Both ZISC (Table 3) and DARN (Table 4) 
performed well in other areas [2] and their ease of 
realisation in hardware makes them the preferred 
choice in many embedded systems applications. They 
are most useful though, when generalisation 
requirements are not too high. One feature that was 
observed in the behaviour of the ZISC and DARN 
networks was that although they learn rapidly, they 
require a larger number of training samples in a given 
phoneme category, before they recognise phonemes in 
that category. For example, the poor result for ZISC 
and DARN for category 4 appears to be related to the 
132 training samples in that class, compared to, say, 
the 395 samples in category 8.  Investigations are 
continuing in this area.  
 
Table3: % Recognition of the ZISC on NZ Vowels 
Phonemes 
(table 1) 

Training 
set 

Test 
set A 

Test 
set B 

Adaptation 
set 

1 97 16 0 1 
2 84 49 0 17 
3 75 20 0 0 
4 91 52 0 10 
5 44 13 0 6 
6 91 29 4 3 
7 5 0 0 0 
8 84 62 0 33 
9 93 50 0 0 
10 99 94 93 98 

Over all 79 40 14 21 

 
 
 

 
Table4: % Recognition of the DARN on NZ Vowels 
Phonemes 
(table 1) 

Training 
set 

Test 
set A 

Test 
set B 

Adaptation 
set 

1 10 10 6 0 
2 18 24 15 11 
3 3 1 0 2 
4 0 0 0 0 
5 7 18 7 4 
6 15 3 0 44 
7 72 57 29 38 
8 55 55 20 54 
9 27 15 13 18 
10 38 25 2 21 

Over all 34 28 11 27 
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Table 5: % Recognition of the ECF on NZ Vowels 

Phonemes 
(table 1) 

Training 
set 

Test set 
A 

Test 
set B 

Adaptation 
set 

1 95 62 16 67 
2 94 75 15 70 
3 97 22 7 14 
4 94 86 58 56 
5 93 44 23 45 
6 96 80 54 69 
7 97 84 14 46 
8 97 81 61 72 
9 96 77 39 57 

10 100 74 26 64 
Over all 96 74 32 58 


