
Connectionist Systems for Rapid Adaptive Learning: A
Comparative Analysis on Speech Recognition

George Coghill2, David Zhang1, Akbar Ghobakhlou1 and Nikola Kasabov1

1Knowledge Engineering and Discovery Institute
Auckland University of Technology, PO Box 92006, Auckland, New Zealand

2University of Auckland, Private Bag 92019, Auckland
akbar@aut.ac.nz, g.coghill@auckland.ac.nz, www.kedri.info

Abstract
In may real time applications a system needs to be
trained quickly on a small amount of new data and then
generalise on unseen data. This is a challenging task
for neural networks especially when applied to difficult
problems such as adaptive speech recognition. An
experimental comparison between three recently
introduced on-line adaptive connectionist paradigms
on adaptive phoneme recognition task is presented in
the paper. The models used are: the Evolving
Classifying Function (ECF), the Zero Instruction Set
Computer (ZISC) and the Deterministic Adaptive
Random Access Memory Network (DARN). An MLP
network, although slow and not an incremental
learning model, was used to provide a benchmark for
comparison. The results show that ECF adapts faster to
new data, while ZISC and DARN require mode data.

Keywords: adaptive systems; evolving systems;
connectionist systems; deterministic adaptive random
memory.

1. Introduction
In this paper we investigate the behaviour of three
recently introduced networks that are intended for use
in applications where incremental and fast learning are
desired. We have chosen to base our experiments on
speech data, taken from the Otago Speech Corpus [7].
We felt that this data set posed a difficult problem and
to demonstrate this fact, we performed the first set of
experiments using a multi-layer perceptron (MLP)
network. This network is neither incremental in its
learning, nor fast (requiring many passes through the
data), but it should give some sort of benchmark
against which we may assess the other networks.
 We begin by describing the properties of the speech
data set and the following section describes results
obtained using the MLP network. The next three
sections briefly describe the principles of the ECF
[5,6], ZISC [8] and DARN [2]. Section 7 concludes
with the results and a discussion of the implications.

2. Experimental Speech Data
The phonemes provided [8], are obtained from 6 NZ
English speakers (3 males and 3 females). The list of
10 NZ English vowels and their corresponding codes is
shown in Table 1.

The wave format data was read in as 16-bit integers.
The sample rate was 22.050 kHz. A Hamming
Window was used to create a matrix of 512 samples,
equating to approximately 23.2 ms of speech. Each
window was subsequently transformed into 25 mel-
cepstrum coefficients. The log energy was also
included to generate 26 input features for every frame.
Each window overlaps the previous by 50%.

Table 1: New Zealand English vowels (monophthongs)

The phoneme data is divided into two sets, A and B.
The data in set A is again divided into two, one for
training and one for testing as follows:
- Training set A contains 4665 samples obtained from

4 speakers (2 males and 2 females).
- Testing set A contains 2503 samples obtained from

new instances of the training set A.
The data in set B is divided into two, a testing set and
an adaptation set, which is used to demonstrate the
incremental learning capability of these networks:
- Testing set B (1 male and 1 female) contains 1427

samples, which are obtained from 2 new speakers.
- Adaptation set contains 1427 samples of training

values for data set B.
The ZISC neurocomputing chip only accepts up to 64
8-bit valued input vectors. The data sets were therefore
scaled to lie between 0 and 255 to accomplish this
requirement. This same data was presented to the ECF
and DARN networks and, after input normalisation,
also used for the MLP network.

3. Off-line learning in MLP
Although the MLP is slow to learn, requiring many
passes (250 in this case), it did generalize well. The
network used here had a single hidden layer of size 60
and a learning rate of 0.4. Column 2, in table 2, shows
the network’s ability to recognise its own training set.
The results for test set A, give some idea of the
difficulty of the task. The results for test set B are
even poorer, mainly because there are no samples of
the speakers for set B in the original training set. The
final column shows the results of adding more training
samples (an adaptation set) to the original training set.
This, as expected, somewhat improves the performance
for test set B. Note, however, that to achieve this last
set of results, the adaptation set must be added to the
original training set and the network completely
retrained, because incremental learning is not an option
for the MLP network.

Phonemes
(table 1)

Training
set

Test
set A

Test
set B

Adaptation
set

1 96 82 36 59
2 87 68 17 63
3 97 76 50 67
4 91 77 27 55
5 96 73 28 75
6 77 33 3 33
7 89 77 7 63
8 94 21 18 24
9 86 61 19 61

10 93 60 22 58
Over all 92 69 26 59

Table 2: % Recognition of an MLP net on NZ Vowels

4.The Evolving Classifying Function
(ECF)
The ECF [5,6] is an ECOS classification model that
partitions a given data set into a number of classes and
finds their class centres in the N-dimensional input
space by "placing" a rule node. Each rule node is
associated with a class and with an influence
(receptive) field representing a part of the N-
dimensional space around the rule node. Usually, such
an influence field in the N-dimensional space is a
hyper-sphere. There are two distinct phases of the ECF
operation. During the first, learning phase, data vectors
are fed into the system one by one with their known
classes. The following steps describe the learning
sequence:
 Step1. Input a vector from the data set and calculate
the distances between the vector and all rule nodes
already created.
 Step 2: If all distances are greater than a maximum
radius parameter Rmax, a new rule node is created.
The position of the new rule node is the same as the
current vector in the input data space and its radius is
set to the min-radius parameter; return to step 1.
 Else If there is a rule node with a distance to the
current input vector less than or equal to its radius and
its class is the same as the class of the new vector,
nothing will be changed; return to step 1.

 Else If there is a rule node with a distance to the
input vector less than or equal to its radius and its class
is different from those of the input vector, its influence
field should be reduced. The radius of the new field is
set to the larger value from the distance minus the min-
radius, and the min-radius.
 Step 3: If there is a rule node with a distance to the
input vector less than or equal to the Rmax, and its
class is the same as the vector's, enlarge the influence
field by taking the distance as the new radius if only
such enlarged field does not cover any other rule node
which has a different class,
 Else create a new rule node the same way as in step
2, and return to step 1.
 The recall (classification phase of new input
vectors) is performed in the following way:
1. If the new input vector lies within the field of one

or more rule nodes associated with one class, the
vector belongs to this class.

2. If the input vector lies within the fields of two or
more rule nodes associated with different classes,
the vector will belong to the class corresponding
the closest rule node.

3. If the input vector does not lie within any field, then
there are two cases:
 (a) one-of-n mode: the vector will belong to the

class corresponding the closest rule node.
 (b) m-of-n mode: take m highest activated by the

new vector rule nodes, and calculate the average
distances from the vector to the nodes with the
same class; the vector will belong to the class
corresponding to the smallest average distance.

The ECF has several parameters that need to be
optimised according to the data set used. An algorithm
for optimisation of these parameters is presented in [6].

5.The Zero Instruction Set
Computer (ZISC)
ZISC is a parallel processing neural network that
provides fast computing power for technology
requiring pattern recognition and information
classification. Each neuron is an independent
processing element, with integrated memory and
learning capability. The ZISC can be considered as an
expert system that can recognize and classify objects or
situations and take instantaneous decisions based upon
accumulated knowledge. It learns from samples of
data. The ZISC is a fully integrated, digital
implementation of the Radial Basis Function (RBF)
neural network model [8]. The ZISC learning process
is as follows:
 If the input vector does not fall in any of the

influence fields of the prototypes already stored in
the network, THEN: a new neuron is committed.
Its influence field is set to the minimum value
between the Maximum Influence Field global
parameter and the distance to the closest prototype
of the neurons committed in the actual context.

Else If the input vector falls in the influence field of a
prototype already stored in the network and their
category matches, THEN: no change;

Else If the input vector falls in the influence field of a
prototype already stored in the network but their
category does not match, THEN: one or more
influence fields are reduced so the adjacent neurons
with different categories become tangent. End.

 The reduction of the influence field, however,
cannot go beyond a minimum defined by the Minimum
Influence Field. As a result, the RBF space mapping
may have prototypes with portions of their influence
field overlapping one another. This may later cause
some uncertain responses from the network. If the
reduction of the influence field is decreased to the
Minimum Influence Field global parameter, the neuron
is labelled as "degenerated".
 The classification process in ZISC consists of
evaluating whether, or not an N-dimension input vector
lies within the influence field of any prototype stored
in the network and/or its sub-networks. This is done by
computing the distance between the input vector and
all stored prototypes, and comparing this distance with
the prototype actual influence field. This operation can
be iterated to survey all sub-networks, that is, classify
the vector for all applicable contexts:
 If the input vector does not lie within any influence
fields, THEN: it is not recognized.
 Else If the input vector lies within the influence
field of one or more prototypes associated with one
category, THEN: it is recognized and declared as
belonging to that category.
 Else If the input vector lies within the influence
field of two or more prototypes associated with
different categories, THEN: it is declared as
unidentified, that is recognized but not formally
identified.
 End.

6. Deterministic Adaptive RAM
Networks (DARN)
The third model used here, is a type of Weightless
Neural Network and is derived from the work of
Aleksander [4], see Figure 1.

Figure 1: A Weightless Neural Network

The network shown is a very small one, which we
chose merely to help with the following description. In
a practical system, there may be many cells in each of
several layers with 4, or even 8 address/input lines per
cell, rather than the 2 shown here. The network appears
pyramid shaped since the number of cells decrease as
we move towards the output layer. If we require
several output classes, a pyramid must be created for
each class. However, all the pyramids share a common
input vector. This input vector is binary and, when
applied to a cell, behaves like an address bus. The
contents of an addressed location may be interpreted as
holding zero, one, or undefined. Initially, all locations
are undefined. In [3], the Aleksander model was
modified, with a resulting improvement in the
performance. The concept of an addressable-set was
introduced. When the input/address vector selects an
undefined location (U), the cell output propagates that
undefined value forward to the next layer. For
example, suppose the output from the first layer is the
vector 1U. The output cell interprets this as having
enabled both addressed locations 10 and 11, forming
an addressable set, or {10, 11}. Their network model
then has some rules governing what to do about this.
The idea of having an addressable set together with
some simple rules was developed further in [1]. Even
then, however, the generalization properties of the
WNN were still not very useful. We now describe the
operation of the Deterministic Adaptive RAM
Network (DARN), with respect to those earlier models.
In the DARN, each addressed location is now a register
instead of a single bit. Initially, all of the registers in
the network are set to 0. The 0 value is interpreted as
an undefined value. During training, as we shall see, a
register's value may become positive, or negative.
 Training - The input/address vector is presented to
the network. The desired output of every cell in the
pyramid is the same as the desired output of the entire
pyramid, effectively the same as described in [3]. We
begin at the input layer. If the desired output is one, the
addressed location is incremented; if the desired output
is zero, the location is decremented. The next step then
involves calculating address vectors for the following
layer moving towards the output. The address vector
for the output cell, or the next layer in a larger
network, is constructed by invoking the recall
operation, (described below) for each cell in the
current layer. Note that there may be undefined bits in
those vectors. When an undefined bit is found (during
training), it is replaced by the desired output. The
address vector is then applied to the output cell, or the
next layer in a larger network and the selected location
is modified as already described for the first layer.
 Recall - During the recall phase, the content of each
addressed location, starting from the input layer, is
interpreted as undefined, zero, or one depending upon
whether the counter value is 0, negative, or positive
respectively. Now, during recall, we should see that the
output of a cell might produce an undefined bit. Here
we adopt the approach used in [3], of propagating the

R

R

Output

Cell

Content

addressable-set to the next layer. This may result in
several locations being selected at the same time.
When such an event occurs (during recall), the
following rules are adopted - they are effectively the
same as described in [3]:
If at least one zero and no ones appears in the
addressable set, the output is zero.
Else If at least one one and no zeros appears in the
addressable set, the output is one.
Else the output is undefined Recall is propagated
forward through the pyramid until the output is
reached. End.
The network only requires one pass through the data.

7. Results and Discussions
The following tables illustrate the performance of each
of the models when tested with the speech data. The
main difference from the MLP, in the way these
experiments were performed, is that the new adaptation
training was continued from the existing network state
having already been trained with the original training
set.
 The ECF network performed well (Table 5). It has
good generalisation capability after a short adaptive
training. It trained rapidly, requiring only four passes
through the data and was readily adapted to the new
training data.
 Both ZISC (Table 3) and DARN (Table 4)
performed well in other areas [2] and their ease of
realisation in hardware makes them the preferred
choice in many embedded systems applications. They
are most useful though, when generalisation
requirements are not too high. One feature that was
observed in the behaviour of the ZISC and DARN
networks was that although they learn rapidly, they
require a larger number of training samples in a given
phoneme category, before they recognise phonemes in
that category. For example, the poor result for ZISC
and DARN for category 4 appears to be related to the
132 training samples in that class, compared to, say,
the 395 samples in category 8. Investigations are
continuing in this area.

Table3: % Recognition of the ZISC on NZ Vowels
Phonemes
(table 1)

Training
set

Test
set A

Test
set B

Adaptation
set

1 97 16 0 1
2 84 49 0 17
3 75 20 0 0
4 91 52 0 10
5 44 13 0 6
6 91 29 4 3
7 5 0 0 0
8 84 62 0 33
9 93 50 0 0
10 99 94 93 98

Over all 79 40 14 21

Table4: % Recognition of the DARN on NZ Vowels
Phonemes
(table 1)

Training
set

Test
set A

Test
set B

Adaptation
set

1 10 10 6 0
2 18 24 15 11
3 3 1 0 2
4 0 0 0 0
5 7 18 7 4
6 15 3 0 44
7 72 57 29 38
8 55 55 20 54
9 27 15 13 18
10 38 25 2 21

Over all 34 28 11 27

References
[1] R. G. Bowmaker and G. Coghill, "Improved

Recognition Capabilities for Goal Seeking
Neuron", Electronics Letters, 1992, vol. 28, pp.
220-221.

[2] G. Coghill and W. K. Lai, "The Use of Weightless
Neural Networks for The Extraction of Feature
Information from Web Documents for Taxonomy
Construction", Robotics, Vision, Information and
Signal Processing (ROVISP), 2003.

[3] E. Filho, M. Fairhurst and D. Bisset, "Adaptive
Pattern Recognition using Goal Seeking Neurons",
Pattern Recognition Letters, 1991, 12, pp. 131-138.

[4] W. Kan and I. Aleksander, "A Probabilistic Logic
Neuron Network for Associative Learning", June
1987, vol. 2, pp. 541-548.

[5] N. Kasabov, "Evolving Connectionist Systems",
Springer Verlag, 2002.

[6] N. Kasabov and Q. Song, "GA-Parameter
Optimisation of Evolving Connectionist Systems
for Classification and a Case Study form
Bioinformatics", ICONIP'02 Singapore, 2002.

[7] S. Sinclair and C.Watson, "The Development of the
Otago Speech Database", Proc. of ANNES '95,
IEEE Computer Society Press, Los Alamitos, CA,
1995.

[8] ZISC-Manual, "Zero Instruction Set Computing
(ZISC) ", 2000, http://www.silirec.com/
Table 5: % Recognition of the ECF on NZ Vowels

Phonemes
(table 1)

Training
set

Test set
A

Test
set B

Adaptation
set

1 95 62 16 67
2 94 75 15 70
3 97 22 7 14
4 94 86 58 56
5 93 44 23 45
6 96 80 54 69
7 97 84 14 46
8 97 81 61 72
9 96 77 39 57

10 100 74 26 64
Over all 96 74 32 58

