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Abstract

In this paper, an on-line, dynamic clustering
method — ECM, Evolving Clustering Method, is
proposed. The ECM is usually used for on-line
systems, in which it performs an one-pass, maximum
distance-based clustering process without any
optimisation. The ECM can also be applied to off-line
problems where a constrained minimisation is
introduced.

1. Introduction

To design a fuzzy inference system, we need to
partition the input sample space to create fuzzy rules.
The partitioning should be carried out in an on-line
mode if the fuzzy systems are required to be created
and modified dynamically. The ECM was specially
designed for the DENFIS, Dynamic Evolving Neural
Fuzzy Inference System [1, 2], and in this case, the
ECM dynamically performs scatter partitioning of the
input space for the purpose of creating fuzzy inference
rules and evolving a fuzzy system. For the similar
purpose, the ECM can also be fuzzified and applied to
the EFuNN, Evolving Fuzzy Neural Network [3].

Although the ECM suits on-line, dynamic systems
it can also be applied to off-line tasks, e.g. the K-
means clustering [4] can get initial value made by an
ECM more effective than made by using of a random
method. In the off-line cases, a constrained
optimisation is applied to the ECM, which makes a
pre-defined objection function, based on a distance
measure, to reach a minimum value subject to the
given constraints.

In this paper, we describe the basic principle of
ECM and its algorithm and then, we show some

examples of ECM application and comparison with
some other well-known clustering methods.

2. The Principle and Algorithm of ECM

2.1  ECM’s Principle

The ECM is a fast, one-pass algorithm for dynamic
clustering of an input stream of data. It is a distance-
based clustering method where the cluster centres are
represented by evolved nodes in an on-line mode. For
any such cluster the maximum distance, MaxDist,
between an sample point, which belongs to one cluster
and is the farthest from this cluster centre, and its
cluster centre, is less than or equal to a threshold
value, Dthr, that has been set as a clustering
parameter. This parameter would affect the number of
clusters to be created.

In the clustering process, the data samples come
from a data stream and this process starts with an
empty set of clusters. When a new cluster is created,
its cluster centre, Cc, is located and its cluster radius,
Ru, is initially set with a value 0. With following
samples presented one after another, some already
created clusters will be updated through changing their
centres’ positions and increasing their cluster radiuses.
Which cluster should be updated and how it should be
changed, depend on the position of the current data
sample. A cluster will not be updated any more when
its cluster radius, Ru, has reached the special value that
is, usually, equal to the threshold value Dthr.

2.2 ECM’s Algorithm

The ECM algorithm is given below as a procedure
and the Figure 1 shows a brief ECM clustering process
in a 2-D space.



• Step 1:  Create the first cluster C1 by simply using
the first sample from the input data stream and
taking its position as the first cluster centre Cc1,
and initially setting the cluster radius Ru1 with  a
value 0 (Figure 1a).

• Step 2: If all samples from the data stream have
been presented, the clustering process finishes.
Else, the current input sample, xi, is taken and the
normalised Euclidean distances d(i, j), between
this sample point and all n already created cluster
centres Ccj,

 d(i, j) = || xi – Ccj ||,  j = 1, 2, … , n,        (1)

are calculated.  In this paper, the distance between
two q-element vectors x and y means a normalised
Euclidean distance defined as follows:

 
q

       || x – y ||  =  ( ?  |  xi –  yi | 
2 ) ½ / q ½         (2)

                           i = 1

where  x, y ?  R q.

• Step 3: If there is a cluster Cm with its centre Ccm;
cluster radius Rum; and a distance value d(i, m),
which is between the cluster centre Ccm and the
sample xi and defined as follows:

Figure 1.  A brief clustering process using ECM with
examples x1 to x9 in a 2-D space:

(a) The example x1 causes the ECM to
create a new cluster C1

0

(b) x2 :  update cluster C1
0 → C1

1

x3 :  create a new cluster C2
0

x4 :  do nothing
(c) x5 :  update cluster C1

1 → C1
2

x6 :  do nothing
x7 :  update cluster C2

0 → C2
1

x8 :  create a new cluster C3
0

(d) x9 :  update cluster C1
2 → C1

3

d(i, m) = min d(i, j) = min( || xi – Ccj || ),
                                      j                          j

     j = 1, 2, … , n.     (3)

and, d(i, m) = Rum,



It is regarded that the current sample xi belongs to
the cluster Cm. In this case neither a new cluster is
created, nor any existing cluster is updated (e.g.
data vectors x4 and x6 in Figure 1). The algorithm
then returns to Step 2.
          Else,

• Step 4: Find a cluster Ca, with its centre Cca;
cluster radius Rua and the distance value d(i, a)
from all n existing clusters through calculating the
extended distance values:

s(i, j) = d(i , j) + Ruj,  j = 1, 2, … , n,        (4)

and then selecting the cluster Ca with the
minimum value s(i, a ):

s(i, a) =  d(i, a) + Rua = min s(i, j)
                                         j

 j = 1, 2, …, n.        (5)

• Step 5:  If s(i, a) > 2Dthr, the sample xi can not
belong to any existing clusters. A new cluster
should be created in the same way as described in
Step 1 (e.g. input data vectors x3 and x8 in Figure
1). The algorithm then returns to Step 2.

                    Else,
• Step 6: If  s(i, a) = 2Dthr, the cluster Ca is

updated by moving its centre, Cca, and increasing
its radius value, Rua. The updated radius Rua

new is
set to be equal to s(i, a)/2 and the new centre
Cca

new is located on the line connecting input
vector xi and the old cluster centre Cca, so that the
distance from the new centre Cca

new to the sample
point xi is  equal to Rua

new
 (e.g. input data points

x2,  x5,  x7 and x9 in Figure 1). The algorithm then
returns to Step 2.

In this way, the maximum distance from any cluster
centre to the farthest sample that belongs to this
cluster, is kept within the threshold value Dthr,
although the algorithm does not keep any information
of passed samples.

2.3  ECM with Constrained Optimisation

After an one-pass clustering described in last
section, the ECM has created n clusters, Cj, and found
the corresponding cluster centres, Ccj, , j = 1, 2, …, n.
And then, the ECM further minimises an objective
function based on a distance measure. For keeping the
maximum distance less than or equal to the threshold
value, the minimising process must implement subject
to the constraints. Taking the normalised Euclidean
distance  (Equation 2.2), between the sample vector xk,

belonging to a cluster Cj, and the corresponding cluster
centre Ccj, as the measure, the objection function is
defined as the follows:

           n          n

J =  ?   Jj  =  ?    (   ?      || xk – Ccj || ) ,        (6)
        j = 1            j = 1      k , xk?Cj

where Jj = ?   | |  xk – Ccj || is the sub-objection function
                    k, xk?Cj

within cluster Cj, j = 1, 2, …, n,

and the constraints are defined as follows:

|| xk – Ccj || = Dthr,       (7)

where k , xk ? Cj and  j = 1, 2, …, n.

The clusters are typically defined as an p × n binary
membership matrix U, where the element uij is set to 1
if the i-th data point xi belongs to the j-th cluster Cj;
and 0 if otherwise. Once the cluster centres Ccj are
defined, the values  uij are derived as follows:

if  || xi – Ccj || = || xi – Cck || , for each  j  ?  k  ;

uij = 1 else uij = 0.       (8)

The ECM minimising algorithm works in an off-
line, iterative mode on a batch of data repeating the
following steps:
• Step1: Initialise the cluster centre Ccj, j = 1, 2, …,

n, which are produced by the ECM one-pass, on-
line clustering.

• Step2:  Determine the membership matrix U by
using Equation (8).

• Step3:  Employ the constrained minimisation
method [5] with Equation (6) and (7) to obtain
new cluster centres.

• Step4:  Calculate the objective function J
according to Equation (7). Stop if the result is
below a certain tolerance value, or its
improvement over previous iteration is below a
certain threshold, or the iteration number of
optimising operation is over a certain value. Else,
the algorithm returns to Step2.

3.  Examples: Applications of ECM for   On-line
and Off-line Problems

3.1 Example 1:  On-line Clustering on Gas-
furnace Data Set



In this example, we use the gas-furnace time series
data set, which consists of 292 consecutive data pairs.
In this case, the clustering simulations are
implemented in the input space (two dimensions). For
the purpose of comparative analysis the following six
clustering methods are applied on the same data set:
(a) ECM, evolving clustering method (on-line, one-

pass)
(b) EFuNN, evolving fuzzy-neural network clustering

(standard mode, on-line, one pass)
(c) SC, subtractive clustering [6] (off-line, one pass)
(d) ECMc, evolving clustering with constrained

optimisation (off-line)
(e) FCMC, fuzzy C-means clustering [7] (off-line)
(f) KMC, K-means clustering (off-line)

Each of them partitions the data set into NoC (= 15)
clusters. The maximum distances, MaxDist, defined in
section 2.1, and the values of the objection function J,
defined by Equation (6), are measured for comparison
and shown in Table 1. We can see from Table 1 that
both ECM and ECMc obtain minimum values of
MaxDist for on-line and off-line clustering, which
indicates that these methods partition the data set more
uniformly than other methods. Looking at the results
from a different point of view, we can state that if all
these clustering methods obtained the same value of
MaxDist, ECM would result in a less number of
clusters. Using the ECMc we can obtained a satisfying
value of the objection function, and considering that
the ECM clustering is an ‘one-pass’ on-line process,
the objection value J for ECM simulation is acceptable
as it is comparable with the J value produced by other
methods.

Methods MaxDist Objective value: J

ECM 0.1 12.9

EFuNN 0.11 13.3

SC 0.15 11.5

ECMc 0.1 11.5

FCM 0.14 12.4

KM 0.12 11.8

Table 1 The results of clustering Gas-Furnace data set

3.2 Example 2: EFuNN with A Fuzzified ECM for
Prediction on Mackey-Glass Data Set

In this example we use both standard EFuNN and
EFuNN with a fuzzified ECM for a prediction task on
Mackey-Glass time series data set [8]. To improve the

EFuNN model using ECM technique, the ECM has to
be fuzzified to become a part of EFuNN.  We term it
as ECMf, which has the algorithm similar to the ECM
but with two differences:
(1) An ECMf works in the fuzzy input space (in the

case of clustering), or both fuzzy input space and
fuzzy output space (in the case of EFuNN) on a
fuzzy data set – a fuzzified crisp training data set,
instead of working in the input space on a crisp
data set.

(2) A normalised fuzzy Euclidean distance is used to
measure similarity instead of the normalised
Euclidean distance used in the ECM.

The task is to predict value x(t+6) from the input
vector [x(t–18)  x(t–12)  x(t–6)  x(t )]. Both training
data set and testing data set include 500 data pairs. The
prediction results including number of nodes, RMSE –
Root Mean Square Errors and NDEI – Non-Dimension
Error Index are listed in Table 2. From the results, it
can be learnt that compared with a standard EFuNN
model, the EFuNN with ECMf can obtain more
accurate prediction results, both in on-line learning
and off-line testing, with less number of rule nodes.

Methods EFuNN with
ECMf

Standard
EFuNN

Rule Nodes 72 76

Learning RMSE 0.066 0.07

Learning NDEI 0.289 0.309

Testing RMSE 0.036 0.038

Testing NDEI 0.159 0.168

Table 2  The results of prediction on Mackey-Class
Time-series data set using EFuNN with ECMf and

standard EFuNN

3.3 Example 3: ECMs – An Extension of ECM for
Supervised Classification on Two Spirals
Problem

Generally, ECM implements in an unsupervised
mode, however, it can be extended to a supervised
classifier in some cases. We assume that a supervised
classification task is to establish a classifier by
learning a data set {xi} = {[xi1, xi2, …, xip]}, i = 1, 2,
…, l, which respectively belong to q subsets (classes).

The idea of ECMs is to apply ECM to every class
subset for finding the cluster centres:
         q
nc = ?  mk ,  where mk is the node’s number in the k-th
       k = 1



subset.

For every input data vector x = [x1, x2, …, xp], if the
classifier finds one node Cckj from nc nodes, which is
situated in the k-th subset and has the minimum
distance to the x in the input space, this input data x
belongs to the k-th subset (class).

The two-spirals problem is a well-known
benchmark task, which generates data points in a given
density. The training data set, generated in density 1,
consists of 194 data with 97 data for each spiral. The
testing data set, generated in density 4, is composed of
770 data with 385 data for each spiral. The formulas
used to generate the spirals are given below, and the
training data are shown in Figure 2 (a).

     ? = (? + p /2) / p

    ? = k  p / 16, k  = 0, 1, 2, …, 96.

    (density 1, for training data)

     ? = (? + p /2) / p
             

     ? = k  p / 64, k  = 0, 1, 2, …, 384.

     (density 4, for testing data)

         x = ? cos(?)
spiral 1:

         y = ? sin(?)

         x =  – ? con(?)
spiral 2:  

         y =  – ? sin(?)

The results of two cases of ECMs classification are
shown in Figure 2 (b) and (c).

Figure 2 (a) The training data of the two-spirals
problem

Figure 2 (b) Decision regions for ECMs with 64 nodes
and 98.4% correct rate on the testing data

Figure 2 (c) Decision regions for ECMs with 124
nodes and 100% correct rate on the testing data

4. Conclusions

This paper introduces a new, on-line clustering
technique: Evolving Clustering Method (ECM),  which
was specially designed for the on-line, evolving fuzzy
inference system. The ECM has a fast ‘one-pass’
algorithm without any optimisation, its off-line
extension, however, applies a constrained
optimisation.

The ECM can be used as an independent method to
solve some clustering and classification problems and
we can see from the results of examples that the ECM,
used in both on-line and off-line, are comparable with
some other well-known clustering methods.

Further directions for this research include: (1)
improve the ECM for on-line adaptive clustering and
classification; (2) apply the ECM to the new research:
mobile robot navigation and object tracking.
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