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ABSTRACT 
The paper presents a framework called ECOS for Evolving 
COnnectionist Systems. ECOS evolve through incremental 
learning. They can accommodate any new input data, 
including new features, new classes, etc. New connections 
and new neurons are created during operation. The ECOS 
framework is used to develop a particular type of evolving 
neural networks - evolving fuzzy neural networks. A novel 
training method is introduced and called eco training. ECOS 
are four (to six) orders of magnitude faster than the 
multilayer perceptrons, or fuzzy neural networks, trained 
with the backpropagation algorithm. This is illustrated on 
benchmark problems, as well as on a real-time problem such 
as the task of voice recognition and person identification.  

 
1. SEVEN MAJOR REQUIREMENTS TO 

THE FUTURE CONNECTIONIST SYSTEMS 
Many developers and practitioners in the area of neural 
networks (NN) have enjoyed the power of the traditional 
NNs when solving AI problems. At the same time they have 
noticed several difficulties when NN are applied to real 
world problems, such as speech and image recognition, 
adaptive prediction, adaptive on-line control, intelligent 
agents. These tasks usually require flexible learning and 
dynamically adaptive connectionist systems (COS) that have 
'open' structures and are able to process both data and 
knowledge. Seven major requirements (that are addressed in 
the ECOS framework ) are listed below:   
(1) A COS should be able to learn quickly from large 
amount of data therefore using fast training, e.g. 'one-pass'  
training.  
(2) A COS should be able to adapt in a real time and in an 
on-line mode where new data is accommodated as it comes. 
(3) A COS should have an 'open' structure where new 
features (relevant to the task) can be introduced at a later 
stage of the system's operation, e.g., the system creates 'on 
the fly' new inputs, outputs, connections and  nodes. 

(4) A COS should be able to accommodate in an 
incremental way everything that is, and that will become 
known about the problem, i.e. in a supervised 
(instructional), or in an unsupervised mode, using one 
modality or another, accommodating data, rules, text, image, 
etc. 
(5) A COS should be able to learn and improve through 
active interaction with other COSs and with the environment 
in a multi-modular, hierarchical fashion. 
 (6) A COS should adequately represent space and time in 
their different scales, inner spatial representation, short- and 
long-term memory, age, forgetting, etc. 
 (7) A COS should be able to analyse itself in terms of 
behaviour, global error and success; to explain what it has 
learned and what it 'knows' about the problem it is trained to 
solve; to make decision about its own improvement. 
 
Several NN theories, models and methods for adaptive 
learning and for dynamical modification of NN structures 
have been introduced so far: incremental learning [1]; 
lifelong learning; on-line learning [3]; growing NN [2]; 
pruning NN [10,8,4]; etc. A framework called ECOS 
(Evolving COnnectionist System) that addresses all the 
issues above is introduced in the paper along with a method 
of training called eco training. They are illustrated on bench 
mark data and real-world data (Iris classification and voice 
recognition respectively).   
 

2. THE PRINCPLES OF ECOS 
ECOS are systems that evolve in time trough interaction 
with the environment, i.e. an ECOS adjusts its structure with 
a reference to the environment. A block diagram of the 
ECOS framework is given in fig.1. ECOS are multi-
modular, hierarchical, open systems. Their main parts are 
described below. 
(1) Presentation part. It performs perception and filtering of 
input information. The number of inputs (features) can vary 
from examples to examples. 



(2) Representation and memory part, where information 
(patterns) are stored. It is a multi-modular, evolving 
structure of NN modules organised in spatially distributed 
groups, e.g. NNs in one group can represent phonemes in a 
spoken language (one NN representing one class phoneme).  
(3) Higher level decision part. It consists of several 
modules, each taking decision on a particular problem (e.g., 
word recognition, face identif ication). The modules receive 
a feedback from the environment and make decision about 
the functioning and the adaptation of  ECOS.  
(4) Action part. The action modules take the output from the 
decision modules and pass information to the environment. 
(5) Self-analysis, and rule extraction modules. This part 
extracts compressed abstract information from the 
representation modules and from the decision modules in 
different forms of rules, abstract associations, etc.  
 
ECOS  are  multi-level, multi-modular structures where 
many modules are connected with inter- and intra- 
connections. The evolving connectionist system does not 
have to have a 'clear' multi-layer structure. An ECOS is a 
modular 'open' structure evolving over time. Initially it is a 
mesh of nodes (neurons) with very little connections 
between them, pre-defined through prior knowledge or 
'genetic' information. These connections mainly connect 
modules of the initial connectionist structure. An initial set 
of rules can be inserted in this structure. Gradually, through 
self-organisation, the system becomes more and more 
'wired'. The network stores different patterns (exemplars) 
from the training examples. A node is created and 
designated to represent an individual example if it is 
significantly different from the previous ones (with a level 
of differentiation set through dynamically changing 
parameters. The functioning of the ECOS from fig.1 is 
based on the following general principles.  
(1) Input patterns are presented one by one, in a pattern 
mode, having not necessarily the same input feature sets. 
After each input example is presented, the ECOS either 
associates this example with an already existing rule (case) 
node, or creates a new one. A NN module, or a neuron is 
created when needed at any time of the functioning of the 
whole system. After the presentation of each new input 
example the system is able to react properly on both new 
and old examples.  
(2) The representation module evolves in two phases. In 
phase one input vector x is passed through the representation 
module and the case nodes become activated based on the 
similarity between the input vector and their input 
connection weights. If there is no node activated above a 
certain sensitivity threshold (Sthr) a new rule neuron (rn) is 
created and its input weights are set equal to the values of 
the input vector x and the output weights - to the desired 

output vector.  In phase two, activation from either the 
winning case neuron ("one-out of-n" mode), or from all case 
neurons with activation above an activation threshold (Athr) 
("many-of-on" mode) is passed to the next level of neurons. 
Evolving can be achieved in both supervised and 
unsupervised modes. In a supervised mode the final decision 
which class (e.g., phoneme) the current vector x belongs to, 
is made in the higher-level decision module that may 
activate an adaptation process. Then the connections of the 
representation nodes to the class output nodes, and to the 
input nodes are updated with the use of learning rate 
coefficients lr1 and lr2, correspondingly. If the class 
activated is not the desired one, then a new case node is 
created. The feedback from the higher level decision module 
goes also to the feature selection and filtering part. New 
features may be involved in the current adaptation and 
evolving phase. In an unsupervised mode a new case node is 
created if there is no existing case node or existing output 
node that are activated above Sthr and an output threshold 
Othr respectively. The parameters Sthr, lr1, lr2, Errthr, Athr 
and Othr can change dynamically during learning.  
(3) Along with growing, an ECOS has a pruning procedure 
defined. It allows for removing neurons and their 
corresponding connections that are not actively involved in 
the functioning of the ECOS thus making space for new 
input patterns. Pruning is based on local information kept in 
the neurons. Each neuron in ECOS keeps a 'track' of its 'age', 
its average activation over the whole life span, the error it 
contributes to, and the density of the surrounding area of 
neurons. Pruning is performed through the fuzzy rule: 
IF  case node (j) is OLD, and average activation of (j) is   
LOW, and the density of the neighbouring area of neurons is 
HIGH or MODERATE, and the sum of the incoming or 
outgoing connection weights is LOW, 
 THEN the probability of pruning node (j) is HIGH.  
(4) The case neurons are spatially organised and each 
neuron has its relative spatial dimensions in regards to the 
rest of the neurons based on their reaction to the input 
patterns. If a new neuron is created when the input vector x 
was presented, it is allocated close to the neuron  which had 
the highest activation to the input vector x.   
(5) There are two global modes of learning in ECOS:  
(a) Active learning mode - learning is performed when a 
stimulus (input pattern) is presented and kept active.  
(b) Eco training mode - learning is performed when there is 
no input pattern presented at the input of the ECOS. In this 
case the process of further elaboration of the connections in 
ECOS is done in a passive learning phase, when existing 
connections that store previously  'seen' input patterns are 
used as eco training examples. The connection weights that 
represent stored input patterns are now used as exemplar 
input patterns for training other modules in ECOS. This type 



of learning with the use of 'echo' data is called here eco 
training. There are two types of eco training: (1) cascade eco 
training; (2) sleep eco training. In cascade eco training a 
new NN module is created when a new class data is 
presented. The module is trained on the positive examples of 
this class, plus the negative examples of the following 
different class data, and on the negative examples of 
previously stored patterns in previously created modules. In 
the sleep eco training, modules are created with positive 
examples only when data is presented. Then the modules are 
trained on the stored in the other modules patterns as 
negative examples. 
(6) ECOS provide explanation information extracted from 
the structure of the NNs. Each case (rule) node is interpreted 
as an IF-THEN rule as it is in the FuNN fuzzy neural 
network [5].   
(7) ECOS are biologically inspired. Some biological 
motivations for evolving systems are given in [9]. 
(8)  The ECOS framework can be applied to different types 
of NNs , neurons, activation functions etc. One realisation 
that uses the ECOS framework is the evolving fuzzy neural 
networks EFuNNs and the EFuNN algorithm as given in [7]. 
The EFuNN realisation of ECOS has been used in the 
experiments below to illustrate the main principles of ECOS 
on the Iris data set (150 instances; 3 classes - setosa, 
versicolour and virginica; four attributes - sepal length, sepal 
width, petal length, petal width. Three EFuNNs are evolved.  
   
Experiment1. Incremental, one-pass learning. 
Characteristics of the evolved system: "one-of-n" mode; no 
pruning; radial basis activation function is used in the case 
neurons; Sthr=0.75; Errthr= 0.1; lr=0; rn(setosa)=22; 
rn(versicolor)= 27; rn(virginica)=25. Overall classification: 
Setosa-50(100%); Versicolor-47(88%); Virginica-43 (86%). 
 Experiment 2. A second learning pass. A second pass on 
the evolved in experiment 1 EFuNNs is performed. 
SThr=0.8; Errthr=0.05; rn(setosa) = 22; rn(versicolor) =37; 
rn(virginica)=37. Overall correct classification: Setosa - 
50(100%); Versicolor - 50 (100%); Virginica - 50 (100%).  
Experiment 3. Using positive examples only. The three 
EFuNNs are evolved by using positive examples only. 
SThr=0.85; Errthr=0.05; rn(setosa) = 6; rn(versicolor) =16; 
rn(virginica)=20. Overall classification: Setosa - 50(100%); 
Versicolor - 48 (96%); Virginica - 46 (92%). This also 
results in high activation of the EFuNNs when similar data, 
but from different classes, are presented.  
Experiment 4. Cascade-eco learning. SThr=0.8, 
Errthr=0.1; rn(setosa) = 19 (4 positive); rn(versicolor) =33 
(9 positive) ; rn(virginica)=28 (14 positive). Overall 
classification: Setosa - 50(100%); Versicolor - 48 (96); 
Virginica - 46 (92%).        

Experiment 5. Sleep eco training. SThr=0.9; Errthr=0.05; 
rn (setosa) = 6; rn (versicolor) =16; rn (virginica)=20. 
Overall classification: Setosa - 50(100%); Versicolor - 50 
(100%); Virginica - 46 (92%). The results of the sleep eco- 
training are better than the results after training with positive 
data only, but the significant difference is that here the false 
positive activation is eliminated, similar to the case in 
experiments 1, 2 and 4.           
 

3. EFuNNs FOR ON-LINE ADAPTIVE 
VOICE AND PERSON RECOGNITION  

Here a small experiment on voice data collected from a 
CNN news movie is presented [6]. 2.5 msec voice data is 
used as reference data for each of four TV show presenters. 
Voice-type data taken from sections of 1.5 msec are used for 
testing. The voice data is transferred every 11.8 msec (with 
50% overlap between two consecutive windows) into 26-
element mel scale (MS) vectors. The 26- element MS 
vectors are averaged over a time frame of 125 msec thus 
producing 20 examples for training and 10 examples for 
testing for each person. The evolved EFuNNs require four to 
six order of magnitude less time for training per input vector 
than the reported in [6] experiments.  
Experiment 1. Incremental on-line learning. Four 
EFuNNs are evolved with both positive and negative data. 
Sthr=0.9; Errthr=0.2; Person 1 EFuNN: rn=31 (8 positive); 
Person 2 EFuNN:  rn= 35 (16 positive);  Person 3 Efu NN: 
rn=35 (14 positive); Person 4 EFuNN: rn=29 (15 positive). 
Overall recognition rate: on training data - 11,16,17 and 20 
(80% recognition rate); on  test data: 2,2,6 and 7 (43%).  
Experiment2. Changing the number of the input 
variables. Two time lags of 26-element MS vectors are 
added to the inputs and the FuNNs from experiment 1 are 
further trained with the new 78 element input vectors. 
Person 1 EFuNN: rn=56; Person 2 EFuNN:  rn= 60;  Person 
3 EFuNN: rn=56; Person 4 EFuNN: rn=59; Overall 
recognition: on training data - 17, 20,20 and 20 (96.25% 
recognition rate); on  test data: 7,2,2 and 8 (48%).  
Experiment 3.Sleep eco training. First four EFuNNs are 
evolved with positive data only. Sthr=0.9; Errthr=0.2; 
Person 1 EFuNN: rn=15; Person 2 EFuNN:  rn= 20;  Person 
3 EFuNN: rn=15; Person 4 EFuNN: rn=10. Overall 
recognition: on training data - 17,20,18,16 (89%); on test 
data: 7,2,2 and 6 (43%). After that eco training is applied. 
The recognition rate has improved to 96% on the training 
data and 53% on the test data. 
 

4. CONCLUSION 
ECOS have features that address the seven major issues 
from section one. The framework is currently applied to 
adaptive speech recognition, adaptive time series prediction, 
and integrated audio and video information processing.  
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