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Abstract 
 
This paper introduces a novel method for minimum 
number of gene (feature) selection for a classification 
problem based on gene expression data with an objective 
function to maximise the classification accuracy. The 
method uses a hybrid of Pearson correlation coefficient 
(PCC) and signal-to-noise ratio (SNR) methods combined 
with an evolving classification function (ECF). First, the 
correlation coefficients between genes in a set of 
thousands, is calculated. Genes, that are highly correlated 
across samples are considered either dependent or co-
regulated and form a group (a cluster). Signal-to-noise 
ratio (SNR) method is applied to rank the correlated genes 
in this group according to their discriminative power 
towards the classes. Genes with the highest SNR are used 
in a preliminary feature set as representatives of each 
group.       
 
An incremental algorithm that consists of selecting a 
minimum number of genes (variables) from the 
preliminary feature set, starting from one gene, is then 
applied for building an optimum classification system. 
Only variables, that increase the classification rate in 
each of the validation iteration, are selected and added to 
the final feature set. The results show that the proposed 
hybrid PCC, SNR and ECF method improves the feature 
selection process in terms of number of variables 
required and also improves the classification rate.  The 
classification accuracy of the ECF classifier is tested 
through the leave one out method for validation.   
 
Keywords: feature selection, gene expression, 
microarray, connectionist classification systems. 

 

1. Introduction 
 

A problem with gene expression analysis, or with any 
large dimensional data set, is often the selection of 
significant variables (feature selection) within the data set 
that would enable accurate classification of the data to 
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some output classes. These variables may be potential 
diagnostic markers too. There are good reasons for 
reducing the large number of variables: (a) an 
opportunity to scrutinise individual genes for further 
medical treatment and drug development; (b) reducing 
the number of redundant and unnecessary variables can 
improve inference and classification (Ramsey and 
Schafer, 2002). 

In genomics expression, the data set is usually plagued 
with large number of variables versus the small number 
of records or vectors (the problem is known as the ‘curse 
of dimensionality’ ). Genes are clustered first, and usual 
methods used are K-means clustering and hierarchical 
clustering (Lukashin and Fuchs, 2001, Gad et al., 2000, 
Eisen et al., 1998), Singular Value Decomposition or 
Principal Component Analysis (Alter et al., 2000), 
supervised clustering and fuzzy clustering methods 
(Gasch and Eisen, 2002, Futschik, 2002), self-organizing 
maps (Tamayo et al., 1999, Alizadeh et al., 2001).  
Feature selection methods are then applied (e.g. signal 
noise ratio, correlation coefficient, p-values, etc) (Goh 
and Kasabov, 2003, Magrath, 2002, Miller et al., 2002, 
Shipp et al., 2002a, Yeoh et al., 2002, Ramaswamy et al., 
2001) to extract the significant variables. 

Feature selection is the process of choosing the most 
appropriate features when creating the model of the 
process (Kasabov, 2002).  Most of the feature selection 
methods are applied across the entire data set.  In Van 
Veer approach (Veer et al., 2002), the genes were 
correlated against the disease outcome and then ranked.  
With increment of 5 genes for each classification model, 
a set of 70 genes was then identified. In Shipp’s 
approach, signal noise ratio was used to identify 30 genes 
(Shipp et al., 2002a).  The set of variables were then used 
for building an outcome prognosis model.  While there 
has been success in the use of these approaches, no clear 
theoretical advantage exists for any given algorithm.  
Some methods apply multiple algorithms (Ochs and 
Godwin, 2003). 
 
In this paper, we propose that multiple passes of different 
feature selection methods can be applied to a data set to 
remove redundant variables and therefore improve the 
effect of each feature selection method at each pass.  We 
demonstrate the effects of applying multiple pass of 
feature selection using PCC and SNR in the first pass and 
using SNR for the second pass before the ECF 



classification method is applied to build a classifier with 
the selected variables. Note that the method is not 
restricted to just two passes of feature selection, neither 
to using only PCC and SNR.  Other feature selection 
methods can be used at each level and the number of 
passes can be adjusted 

The rationale of the approach is based on the idea that 
most feature selection methods are based on some 
assumptions of the data.  Using a hybrid approach could 
overcome the shortcomings of each method.  The hybrid 
method introduced here attempts to select the features for 
each level of its pass, so that after each pass, the 
redundant and unnecessary variables in the data are 
reduced to allow an improved set of significant variables 
to be extracted.  With the use of a large number of 
variables the apparent (training) error rate of the classifier 
may decrease, but the generalisation ability of the model 
may decrease too (Ambroise and McLachlan, 2002). A 
feature selection that aims to reduce the number of genes 
could improve the generalization of the classifier. 

The computation time of calculating the PCC matrix 
increases exponentially with the size of the data set.  In 
this paper, we also present a novel way of reducing the 
computation time of PCC calculation. 

The validation of the hybrid method is done using an 
evolving classifier ECF, a supervised clustering method 
(Kasabov, 2002). To avoid bias in the validation, a hold-
out approach was adopted for a second set of experiments 
as explained in the next sections. 

The cancer data set used in the experiments is from 
(Shipp et al., 2002a) (classification of DLBCL and 
Follicular Lymphoma).  The lymphoma data set contains 
77 vectors: 58 for DLBCL, and 19 for Follicular 
Lymphoma.  There are 7129 gene variables.  

 

2. Brief Introduction to PCC and SNR 
 

Linear correlation coefficient is a measurement of the 
strength of a linear relationship between a dependent 
variable (i.e. the output class, y) and the independent 
variable (i.e. the genes, x).    

r = Σ(x-xmean)(y-ymean)/ (σx + σy) 

When x increases and if y also tends to increase or 
decrease, there is a mathematical linear dependency 
between y and x.  How strong is this dependency?  The r 
calculated by PCC gives a quantitative idea of the 
dependency.  The correlation value varies from –1 to 1.  
A value of 0 suggests no linear correlation, while values 
nearer to –1 or 1 means negatively or positively 
correlated.   PCC is for bivariate analysis, and provides a 
quick way to estimate linear relationship for data that has 
a normal distribution.  However, for large data set, the 
computation time to calculate the PCC matrix is very 
long.  Here we propose a novel way to calculate the 
matrix in a shorter time. 

 SNR is a calculated ranking number for each variable to 
define how well this variable discriminates two classes. 
The following formula is used:    

(µclass 1 - µclass 2)/(σclass 1 + σclass 2) 

where: µclass 1 and µclass 2 are the mean values for this 
variable for the samples from class 1 and class 2 
respectively and  σclass 1 and σclass 2 are the corresponding 
standard deviations. 

This method is combined with a weighted voting 
classifier in (Shipp et al., 2002b).  SNR measurement is 
affected by the size of the variables, as can be seen from 
the formula.  When there are more variables, the mean 
and variance of the rest of variables of other classes are 
dependent on the data dispersion and the number of 
variables, which affects SNR ranking of the significant 
variables due to the general increase of noise in the data.  
If the number of variables can be reduced significantly, 
the SNR method is more capable of detecting and 
ranking a smaller number of significant variables. 

 

3. Introduction to Evolving Classifier 
Function 

 
Evolving connectionist systems (ECOS) are systems that 
evolve their structure and functionality over time from 
incoming information (Kasabov, 2002). The ECF 
(Evolving Classifier Function) model used here is a 
connectionist system for classification tasks that consists 
of four layers of neurons (nodes). The first layer 
represents the input variables; the second layer – the 
fuzzy membership functions; the third layer represents 
clusters centers (prototypes) of data in the input space; 
and the four layer represents classes (Kasabov, 2002).         
The learning algorithm of the ECF is as follows: 
 

1. If all vectors have been input, finish the current 
iteration; otherwise, input a vector from the data 
set and calculate the distances between the vector 
and all rule nodes already created using Euclidean 
distance by default.  

2. If all distances are greater than a max-radius 
parameter, a new rule node is created. The 
position of the new rule node is the same as the 
current vector in the input data space and the 
radius of its receptive field is set to the min-radius 
parameter; the algorithm goes to step 1; otherwise 
it goes to the next step: 

3. If there is a rule node with a distance to the current 
input vector less then or equal to its radius and its 
class is the same as the class of the new vector, 
nothing will be changed; go to step 1; otherwise:  

4. If there is a rule node with a distance to the input 
vector less then or equal to its radius and its class 
is different from those of the input vector, its 
influence field should be reduced. The radius of 
the new field is set to the larger value from the 
two numbers: distance minus the min-radius; min-
radius.  New node is created as in (2) to represent 
the new data vector. 

5. If there is a rule node with a distance to the input 
vector less than or equal to the max-radius, and its 
class is the same as of the input vector’s, enlarge 
the influence field by taking the distance as a new 



radius if only such enlarged field does not cover 
any other rule nodes which belong to a different 
class; otherwise, create a new rule node in the 
same way as in step 2, and go to step 1. 

      
The recall procedure (classification of a new input 
vector) in the trained ECF is performed in the following 
way: 

1. If the new input vector lies within the field of one 
or more rule nodes associated with one class, the 
vector is classified in this class;  

2. If the input vector lies within the fields of two or 
more rule nodes associated with different classes, 
the vector will belong to the class corresponding 
to the closest rule node. 

3. If the input vector does not lie within any field, 
then there are two cases:  (i) one-of-n mode: the 
vector will belong to the class corresponding the 
closest rule node; (ii) m-of-n mode: take m highest 
activated by the new vector rule nodes, and 
calculate the average distances from the vector to 
the nodes with the same class; the vector will 
belong to the class corresponding the smallest 
average distance. 

 
The ECF model used in the paper has the following 
parameter values: MaxField=1.0, MinField= 0.02, 
number of membership functions MF=1 (no fuzzy 
membership functions); number of rule nodes used to 
calculate the output value of the ECF when a new input 
vector is presented MofN=1 (number of neighbors to 
consider when evaluating nearest node); number of 
iterations for presenting each input vector Epochs=5. 

 

4. PCC and SNR Hybrid Method for 
Preliminary Feature Selection  

 
The algorithm for the hybrid feature selection is as 
follows: 

1. Set a threshold for the Pearson Correlation 
Coefficient, e.g. Pthreshold = 0.6.  For each 
iteration, i=1,…n (where n is the number of 
variables in the data set) calculate the 
correlation coefficient ri j for xi with respect to xj, 
j=i,..,n. 

2. Select those variables where ri j is greater than 
Pthreshold, i.e. PCC(xi j) > Pthreshold, where xi j 

�  Si, 
and Si is the set that contains the correlated 
variables for variable xi at  iteration i. 

3. Apply SNR on Si and select the highest ranked 
variable to represent this group of correlated 
variables: xi = max(SNR(xi j)), xi j 

�  Si. This will 
remove redundant variables that are ‘similar’  to 
each other in the current iteration, selecting only 
the best variable to represent Si, therefore 
reducing the size of the original matrix for 
future PCC calculation.  At the end of all 
iterations, a much reduced data set D is 
obtained. Note that there are three variations to 
selecting the representative variables that will be 
mentioned later in this section. 

4. Perform SNR on D and rank the variables 
according to their SNR value.  Set thresholds for 
variable cut-off, Vthreshold and classification 
threshold Cthreshold e.g. Vthreshold  = 100,  Cthreshold  
= 1 (100% classification rate).  This will set the 
limit in which the validation process will stop, 
based on maximum number of SNR-ranked 
variables that are investigated or given 
classification accuracy is achieved.  Select the 
increment step in which number of variables are 
selected, e.g. Vstep = 1. This will determine how 
many variables to increment for each step of 
validation. 

5. Start with the highest ranked SNR variables, i.e. 
vk, vk={L, rank(SNR(D),k)}, k=1,..m, where m is 
the number of variables in D, and L is the list of 
successful variables which is null in the 
beginning. Validate the variables using ECF 
leave-one-out method. If the average 
classification rate is less than Cthreshold, or less 
than the Vthreshold, add variable to the list, L= {L, 
vk}.  Add the next set of variables from the 
ranked SNR by the amount of Vstep.   

6. If the set average classification rate is achieved 
(e.g.100%) or variable threshold is reached, stop 
the process.  The set of variables in L will be the 
set that has the highest classification rate 
amongst the iterations. 

 
In the algorithm, the computation time is greatly reduced 
as variables that behave ‘similarly’  are grouped and 
removed for further selection, thereby decreasing the size 
of data for further correlation coefficient calculation.  In 
this paper, three approaches are used: Method 1: 
selecting the first correlated variable in Si; Method 2: 
selecting the variable highly correlated with output class 
in Si; and Method 3: selecting a variable ranked highest 
in SNR in Si (presented in the algorithm). In another 
implementation, instead of selecting the next variable 
incrementally in step (5) of the algorithm, only variables 
that improve the classification rate in each validation 
iteration are selected and added to the final variable set.  
We shall denote this variation to the algorithm as Method 
1a, Method 2a, and Method 3a with respect to the three 
methods described above. 
 
In our experience, the calculation of the entire correlation 
matrix for gene expression data is computationally 
intensive that often takes a long time to calculate.  Using 
this approach of reducing the data by removing highly 
correlated variables (which are redundant) we are able to 
get a reasonable matrix of correlation coefficient of the 
remaining variables.  Selecting the set of variables 
incrementally based on the classification rate makes it 
possible that the selected set of variables that can classify 
the entire data set will be the optimum as every variable 
in the list L is selected only i f it increases the 
classification rate. 
      
The criterion of setting a maximum number of variables, 
Vthreshold as cut-off for the validation process is also an 
advantage feature of the method introduced here. We 
selected 100 as the number of the cut-off point, based on 



the fact that previous research has shown good 
classification results with genes less than this number.   
      
To avoid selection bias in the validation (Ambroise and 
McLachlan, 2002), another experiment was done where 
the data set was divided into training and testing sets, 
Dtrain and Dtest.  The hybrid feature selection method was 
run on Dtrain where a set of variables was selected.  This 
set of variables was used to build an ECF model and Dtest 
was then tested on the model.  As the data set was not 
large in terms of the number of sample vectors, leave one 
out cross validation method was selected, i.e. one sample 
vector was selected for the testing set in each iteration of 
the validation and the rest of the data samples were used 
for training an ECF model. 

 

5. Analysis of Results 
 

Results of the lymphoma cancer data are shown in Table 
1. The first column indicates the data set for the 
experiment and the method that was applied, second 
column shows the correlation coefficient threshold set, 
third column shows the number of variables that was 
selected using SNR, and the last column shows the 
validation classification rate (leave one out) using ECF.  
Other experiments using different correlation coefficient 
settings ranging from 0.2 to 0.9 have been done.  The 
best performance of 0.6 is presented here. 
 

 Data  PCC 
threshold 

# Var 
selected 

Classific. 
Rate 

Lymphoma – Method 1 0.6 15 100% 

Lymphoma – Method 2 0.6 60 100% 

Lymphoma – Method 3 0.6 61 100% 

Lymphoma –Method 1a 0.6 9 100% 

Lymphoma– Method 2a 0.6 11 98.7% 

Lymphoma– Method 3a 0.6 10 98.7% 

Lymphoma – using 
variables highly 
correlated to output 

0.7 282 74.03% 

Lymphoma – using top 
variables according to 
SNR 

- 205 100% 

 
Table 1 Exper imental results of lymphoma cancer  data using 
different cor relation coefficient settings.  The number  of var iables 
selected and classification r ate are shown in the last 2 columns.  
Method 1: selecting fir st cor related var iable in Si, Method 2: 
selecting var iable most cor related to output class in Si; Method 3: 
selecting var iable ranked highest by SNR. The methods with suff ix 
‘a’  mean the alternative algor ithm of selecting var iable only when it 
improves the validation r ate. The tr aditional approaches were to 
use var iables most cor related to output class or  to apply SNR on the 
entire data set. 
 
The results demonstrate that for the lymphoma data, less 
number of variables and higher classification rate is 
achieved with the use of the introduced here hybrid 
method. The proposed hybrid PCC and SNR method 
improves the feature selection process in terms of number 
of variables required and also improves the classification 

rate as compared with the standard procedure of:  (1) 
calculate the correlation coefficients between genes and 
classes and choose the highly correlated as a set of 
features, or/and (2) apply SNR on the whole set of genes 
and rank them with a consecutive selection of the top 
genes to build a classifier(Shipp et al., 2002a, Shipp et 
al., 2002b). 
 
In the case of lymphoma data, when using 0.6 for the 
correlation coefficient threshold, 15 variables were 
selected from the 7129 variables using Method 1.  This 
gave a classification rate of 100%, which is higher than 
Shipp’s experiment, and with less number of genes 
identified.  In Shipp et al, 30 genes were identified and 
classification rate of 91% was obtained.  In the 
alternative algorithm 1a, 9 variables were selected with a 
classification of 100%, which is even better.  The list of 
genes is shown in Table 3.  The results show the potential 
of the hybrid method in identifying a lower number of 
variables.  Using SNR on its own (i.e. traditional 
approach), the number of variables was much higher in 
comparison (205 for lymphoma), with about similar 
classification rate. 

 
Table 2 shows the accuracy of the model when unbiased  
(hold-out) experiment is conducted.  In this approach, the 
PCC are calculated not on the whole data set, as it was 
done so far, but at every leave-one-out iteration. We were 
interested to achieve a lower number of variables with 
highest classification rate and the experiments show that 
the alternative algorithm gave a more consistent 
performance in terms of less number of variables selected 
as well as highest classification rate.   

 
Data PCC Average Number 

of Variables 
Extracted 

Average 
Rate 

Lymphoma 0.6 10 91% 

 
Table 2 Exper iment results of lymphoma data with hold-out.  
 
The hold-out classification rate of 91% is significant 
compared with Shipp’s bias rate of the same.  It is known 
that classification rate for un-biased selection would yield 
a lower accuracy than applying the biased approach 
(Ambroise and McLachlan, 2002). In addition, the 
number of variables selected was much less than the 30 
variables selected by Shipp. In cases where a low number 
of variables are desirable, e.g. drug targeting of the 
disease or development of blood test kit on proteins, it is 
easier to work with less number of genes, which means 
less number of proteins to be tested. 
 
Fig. 1 shows the principal component analysis (PCA) 
plot of the first two components for the extracted data set 
of 15 variables for method 1 (see table 1).  The plot 
shows that the two classes of DLBCL and FL are 
separable.  The blue circle represents the DLCBL class 
and red circle FL class.  Fig 2 and 3 show the PCA plots 
of the various methods from table 1.  Fig 4 and 5 show 
the PCA plots with sample vectors that were incorrectly 
classified. 



      
Methods 1, 2 and 3 yield 100% classification but at the 
expense of a larger set of variables.   Methods 1a, 2a and 
3a has slightly lower classification rate but the rates are 
consistent and the variables selected are much less.  The 
results show that the variables selected by the hybrid 
approach were significant in its expression within each 
vector, such that they exhibit similar trends, enough to be 
well clustered by ECF.  This results in the higher 
classification rate obtained in the experiments as 
compared to the traditional approaches. 
      
Generally, the individual feature selection approach 
would probably also yield vectors with similar trend, 
good enough for clustering, but because a larger number 
of variables are selected, the analysis becomes 
increasingly tedious and complicated.  As mentioned, 
simplicity in terms of less number of variables can 
improve inference and classification. 
 
'Bcl-2 related (Bfl-1) mRNA' 
'TFRC Transferrin receptor (p90, CD71)' 
'ADA Adenosine deaminase' 
'SLC' 
'PLOD Lysyl hydroxylase' 
'TYMS Thymidylate synthase' 
'SERUM PARAOXONASE/ARYLESTERASE' 
'(clone GPCR W) G protein-linked receptor gene m    
(GPCR) gene, 5' end of cds' 
'Tryptophan hydroxylase (Tph) mRNA' 
 
Table 3. The list of 9 genes selected in the modelling exper iment 
with the use of Method1a that gives 100%  accuracy of classification 
between the DLBCL and the Follicular  Lymphoma data (Shipp et 
al., 2002a). 
 

 
Figure 1 PCA plot of DL BCL (blue) versus FL (red) for  the 15 
var iables selected using Method 1 

 

 
Figure 2 PCA plot of DL BCL (blue) versus FL (red) for  the 60 
var iables selected using Method 2. 

 
 

 
Figure 3 PCA plot of DLBCL (blue) versus FL (red) for  the 9 
var iables selected using Method 1a 

 
 

 

21 

 
Figure 4 PCA plot of DL BCL (blue) versus FL (red) for  the 11 
var iables selected using Method 2a.  Sample vector  21 was classified 
incor rectly which cor responds to the blue circle amidst the red 
circles on the centre r ight side. 

 
 

 

 
Figure 5 PCA plot of DLCBL (blue) versus FL (red) with var iables 
using Method 3a.  Vector  sample 68 was classified incor rectly and 
cor responds to the red circle amidst the blue ones on the lower  
r ight. 

 

6. Conclusion 
 

The hybrid feature selection method described in this 
paper has demonstrated that the approach is able to 
reduce the number of genes selected as well to increase 
the classification rate on a case study Lymphoma 
classification data. Like ensemble of experts, each feature 
selection method at each stage of processing removes the 
redundant variables and thereby reducing the noise in the 
data to allow for a better set of features to be selected in 
the next stage. The method has been successfully tested 



on the lymphoma data set.  Though the data set is related 
to cancer, the method is generic and can be applied on 
other large data sets that require feature selection.  

 

7. Future Work 
 

There is a potential in using this approach, which is a 
divide and conquer approach, to analyse clusters of 
correlated genes, and discover the functional genomics of 
these groups.  In our experiment, a gene is selected out of 
every correlated cluster in the hybrid approach.  This can 
be further explored to discover if there is any common 
functional genomics within these groups, and if the 
selected gene can be better represented by another one – 
more appropriate for clinical applications.  
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