
Evolving Fuzzy Neural Networks - Algorithms, Applications and Biological 
Motivation 

 
Nikola Kasabov 

 Department of Information science, University of Otago, 
       P.O.Box 56, Dunedin, New Zealand, nkasabov@otago.ac.nz 

 
Abstract 
In the paper, the ECOS (Evolving Connectionist Systems) 
framework is used to develop a particular type of 
evolving neural networks - evolving fuzzy neural 
networks - EFuNNs. They can be trained in an on-line, 
incremental mode and are several order of magnitude 
faster than the ordinary neural networks trained with the 
backpropagation algorithm. This is illustrated on the task 
of adaptive phoneme recognition.  
Keywords: evolving neural networks; fuzzy neural 
networks, adaptive phoneme recognition; eco  training 
 
1. Inroduction - The ECOS framework for 
evolving connectionist systems 
In [5] the ECOS framework for evolving connectionist 
systems is presented and illustrated on two classification 
problems. An ECOS is a modular 'open' system that 
evolves over time. Initially it is a mesh of nodes (neurons) 
with very little connections between them, pre-defined 
through prior knowledge or 'genetic' information. These 
connections mainly connect modules of the initial 
connectionist structure. An initial set of rules can be 
inserted in this structure. Gradually, through self-
organisation, the system becomes more and more 'wired'. 
The network stores different patterns (exemplars) from 
the training examples. A node is created and designated to 
represent an individual example if it is significantly 
different from the previous ones (with a level of 
differentiation set through dynamically changing 
parameters. 
    ECOS is in coherence with some theories about the 
functioning of the human brain [8,9,10]. 
   
2.  EFuNNS - Evolving fuzzy neural networks 
and the EFuNN algorithm 
2.1. The general FuNN architecture  
Fuzzy neural networks are neural networks that realise 
a set of fuzzy rules and a fuzzy inference machine in a 
connectionist way [2,12,7]. The fuzzy neural network 
FuNN is a connectionist feed-forward architecture with 
five layers of neurons and four layers of connections 
[4]. The first layer of neurons receives input 
information. The second layer calculates the fuzzy 
membership degrees to which the input values belong 
to predefined fuzzy membership functions, e.g. small, 

medium, large. The third layer of neurons represents 
associations between the input and the output 
variables, fuzzy IF-THEN rules. The forth layer 
calculates the degrees to which output membership 
functions are matched by the input data, and the fi fth 
layer does defuzzif ication and calculates values for the 
output variables. A FuNN has both the features of a 
neural network and a fuzzy inference machine. Several 
training algorithms have been developed for FuNN [4]: 
a modif ied backpropagation algorithm; a genetic 
algorithm; structural learning with forgetting; training 
and zeroing; combined modes. Several algorithms for 
rule extraction from FuNN have been also developed 
and applied. One of them (aggregated rule extraction 
method) represents each rule node of a trained FuNN 
as an IF-THEN fuzzy rule. FuNNs have several 
advantages when compared with the traditional NN or 
with the fuzzy systems: (a) They are both statistical 
and knowledge engineering tools; (b) They are robust 
to catastrophic forgetting, i .e. when a FuNN is initial ly 
trained with the structural learning with forgetting 
algorithm and then further trained only on new data, it 
keeps a reasonable memory of the old data; (c) They 
can work on both real input data and fuzzy input data 
represented as singletons (centres of the input 
membership functions), 
 
2.2. EFuNNs - Evolving FuNNs     
EFuNNs are FuNN structures that evolve according to the 
ECOS principles. All nodes in an EFuNN are created 
during learning. The nodes representing membership 
functions (fuzzy label neurons) can be modified during 
learning. As in FuNN, each input variable is represented 
here by a group of spatially arranged neurons to represent 
different fuzzy domain areas of this variable. For example 
three neurons can be used to represent "small", "medium" 
and "large" fuzzy values of a variable. Different 
membership functions can be attached to these neurons 
(triangular, Gaussian, etc.). New neurons evolve in this 
layer if for a given input vector the corresponding 
variable value does not belong to any of the existing 
membership functions to a membership degree greater 
than a membership threshold, e.g. 0.6. A new fuzzy label 
neuron or an input variable neuron can be created during 
the adaptation phase of an EFuNN.  
 



2.3. The EFuNN algorithm 
1. Initialise an EFuNN structure with a maximum number 
of neurons. Initial connections may be set through 
inserting fuzzy rules in a FuNN structure. FuNNs allow 
for insertion of fuzzy rules as an initialisation procedure 
thus allowing for prior information to be used prior to the 
evolving process. If there are no rule (case) nodes 
connected to the fuzzy input and fuzzy output neurons, 
then create the first node rn=1 to represent the first 
example EX=x1 and set its input W1(rn) and output W2 
(rn) connection weights as follows:.  
  <Create a new rule node  rn to represent an example 
EX>: W1(rn)=EX; W2(rn ) = TE, where TE is the fuzzy 
output vector for the example EX.  
2. WHILE  <there are examples> DO 
Enter the current, i th example EX=xi. If there are new 
variables that appear in this example and have not been 
used in previous examples, create new input and/or output 
nodes with their corresponding membership functions.     
3. Find the normalised fuzzy similarity between the new 
example EX (the vector of its membership degrees to the 
fuzzy input labels) and the already stored patterns in the 
case nodes j=1,2,…,rn: 
      Dj= sum ( abs (EX - W1(j)) )/ 2 / sum (W1(j)) 
4. Find the activation of the rule (case) nodes j, j=1:rn. 
Here radial basis activation function, or a linear one, can 
be used on the Dj input values ( A1 (j) = radbas (Dj), or      
A1(j) = 1 - Dj) 
5. Update the local parameters of the rule nodes: age, 
average activation.   
6. Find all the case nodes j with an activation value A1(j) 
above a sensitivity threshold Sthr.  
 7.  If there is no such case node,  then <Create a new rule 
node> using the procedure from point 1. 
     ELSE  
     8. Find the rule node inda1 with  maximum value 
maxa1.   
     9. (a) in case of "one-of-n" EFuNNs, propagate the 
activation maxa1 of the rule node inda1  to the fuzzy 
output neurons. Saturated linear functions are used as 
activation functions of the fuzzy output neurons: 
              A2 = satlin (A1(inda1) *  W2) 
         (b) in case of "many-of-n" mode, zero all the 
activation values of case nodes that are below an 
activation  threshold Athr  and propagate the activation 
values A1 to the next neuronal layer. 
      10. Find the winning fuzzy output neuron inda2 and 
its activation maxa2. 
     11. Find the desired winning fuzzy output neuron indt2 
and its value maxt2. 
     12. Calculate the fuzzy output error for each fuzzy 
output:  Err=A2 - TE. 
      13.  IF (inda2 is different from indt2) or (Err (inda2) > 
Errthr )  <Create a new rule node> 
              ELSE 

14.  Update the (a) input,  and (b) the output 
connections of rule node k=inda1: (a) Dist=EX-
W1(k); W1(k)=W1(k) + lr1. Dist, where lr1 is 
the learning rate for the first layer; (b)  W2(k) = 
W2 (k) + lr2. Err. maxa1 

15. Prune rule nodes j and their connections that satisfy 
the following fuzzy pruning rule to a pre-defined level 
representing the current need of pruning: 
IF (node (j) is OLD) and (average activation A1av(j) is 
LOW) and (the density of the neighbouring area of 
neurons is HIGH or MODERATE) and  (the sum of the 
incoming or outgoing connection weights is LOW) and 
(the neuron is associated with the corresponding "yes" 
class output nodes (for classification tasks only)) 
THEN the probability of pruning node (j) is HIGH  
16. END of the while loop and the algorithm  
17. Repeat steps 2-16 for a second presentation of the 
same input data or for eco training (see [5] for 
explanation).  

 
3. EFuNNS for Adaptive Phoneme 
Recognition  
Here the EFuNN algorithm is applied to the problem of 
phoneme recognition and phoneme adaptation. 
 
3.1. The problem of adaptive speech recognition 
Adaptive speech recognition is concerned with the 
development of speech recognition systems that can adapt 
to new speakers (of the same or a new accent); that can 
enlarge their database of words in an on-line mode; that 
can acquire new languages [1,3,6]. There are several 
methods that have been experimented for adaptive 
phoneme recognition. One of them [6] uses phoneme 
FuNN modules for each class phoneme trained with 
learning with forgetting algorithm. The adaptation to a 
new speaker is achieved through additional training of a 
phoneme FuNN on new speaker's data for a few epochs. 
This approach to adaptive speech recognition assumes 
that at the higher, word recognition level, a decision is 
made on which phoneme module should be adapted in 
order to accommodate the new speaker's data and to 
achieve a correct word recognition. The backpropagation 
(BP) algorithm was used. This method assumes a fixed 
number of rule nodes in the FuNNs. There are some 
difficulties when applying this method for on-line 
adaptation on continuous speech: (1) even few epochs of 
additional training with the use of the BP algorithm may 
not be fast enough; (2) in spite of  the robustness of the 
FuNN architecture to catastrophic forgetting, a trained 
FuNN tends to forget old speech data if the new data 
differs significantly from the old one; (3) limited potential 
for accommodating new speech data because of the fixed 
size of the FuNN networks.    
     Here, the EFuNN algorithm are used for the purpose of 
phoneme adaptation of already trained EFuNNs on new 



accent data. In the experiments below, four EFuNNs are 
evolved to learn existing data on four NZ English 
phonemes. Recognition results are compared with the 
results when ordinary FuNNs are used and when 
GAFuNNs (FuNNs optimised by a genetic algorithm) are 
used [13]. Then one of the EFuNNs, the phoneme /I/ 
module, is further evolved to accommodate  new accent 
data in the pronunciation of /I/ taken from a speaker of  a 
different accent.      
 
3.2. EFuNNS for phoneme recognition 
The following phoneme data on four phonemes of New 
Zealand English spoken by two male and two female 
speakers are used in the experiment: /I/ (taken from the 
pronounced word "sit", 100 mel scale vectors,  each of 
them consisting of 26 mel coefficients); /e/ (taken from 
"get", 170 mel scale vectors); /ae/ (taken from "cat", 170 
vectors), and  /i/ (taken from "see", 270 vectors). Three 
membership functions are used to represent "small", 
"medium" and "high" values for each mel-coefficient. The 
number of examples selected for each phoneme 
corresponds to the relative frequency of the appearance of 
this phoneme in the spoken NZ English. Phonemes /e/ 
and /i/ have similar average mel values which makes their 
differentiation more difficult.  
     Experiment 1. EFuNNs trained on both positive and 
negative data. Four EFuNNs are evolved from the 710 
input vectors. The EFuNNs have the following 
characteristics: linear activation function for the case 
(rule) nodes; saturated linear functions for the fuzzy 
outputs and a linear function for the class output neurons; 
Sthr=0.9; Errthr=0.2; no pruning; lr=0; rn(phoneme /I/) = 
361 (90 for the class phoneme - positive); rn(phoneme /e/) 
= 395 (90 positive); rn(phoneme /ae/) = 362 (110  
positive); rn(phoneme /i/) = 393 (101  positive). The 
following mean sum-square error is evaluated for the four 
phoneme modules correspondingly: 0.0085; 0.055; 0.025; 
0.145. The overall classification rate is: /I/ - 94 (94%); /e/ 
- 131 (77%); /ae/ - 152 (90%); /i/ - 167 (62%). The 
examples that have not been classified correctly have not 
been miss-classified either. They did not activate any of 
the four EFuNNs (for them all EFuNNs had zero output 
values). Of course this is a much better result than having 
a misclassification (false positive activation). Here the 
negative examples (that do not belong to a phoneme 
module) are rejected with 100% accuracy in all EFuNN 
modules.    
    Experiment 2. Using positive phoneme data only. 
The same experimental setting is used as in experiment 1, 
but four phoneme EFuNNs are evolved with positive data 
only. The EFuNNs have the following characteristics: 
rn(phoneme /I/) = 89; rn(phoneme /e/) = 89; rn(phoneme 
/ae/) = 108; rn(phoneme /i/) = 101. The overall 
classification rate is: /I/ - 94 (94%); /e/ - 149 (87.6%); /ae/ 
- 154 (90.6%); /i/ - 190 (70.3%). In contrast with 

experiment 1, the examples that have not been classified 
correctly have been miss-classified. 
 
3.3. Comparative analysis of  FuNNs, GAFuNNs and 
EFuNNs on the phoneme recognition task  
Figures 1 and 2 show the results from the above 
experiments and also the results when: (1) four FuNNs, 
'manually' designed and  trained with a BP algorithm, are 
used for each of the phonemes, and (2) when four FuNNs 
are optimised with a GA algorithm and trained again with 
the BP[13 ].      
     For the FuNNs experiment four FuNNs were 
'manually' created each having the following architecture: 
78 inputs (3 time lags of 26 element mel vectors each), 
234 condition nodes (three fuzzy membership functions 
per input), 10 rule nodes, two action nodes, and one 
output. This architecture is identical to that used for the 
speech recognition system described in [6]. Nine 
networks were created and trained for 1000 epochs for 
each phoneme. A bootstrap method is used for selecting 
statistically appropriate data sets at every 10 epochs of 
training the FuNNs. Each trained FuNN was recalled over 
the same data set, and the recall accuracy calculated. For 
these calculations an output activation of 0.8 or greater is 
taken to be a positive result, while an activation of less 
than 0.8 is negative. The mean classification accuracy of 
the manually designed FuNNs are presented in fig.1. The 
manually designed networks have great difficulty in 
correctly identifying the target phonemes, tending instead 
to classify all of the phonemes presented as negative 
examples (for the chosen classification threshold of 0.8).  
     For the GFuNNs experiment a population size of fifty 
FuNNs was used, with tournament selection, one point 
crossover, and a mutation rate of one in one thousand 
[13]. Each individual was trained with the BP algorithm 
for five epochs on the training data set with the learning 
rate and momentum set to 0.5 each. The GA was run for 
fifty generations, at the end of which the most fit 
individual was extracted and decoded. The resulting 
FuNN was then trained on the entire data set using the 
bootstrapped BP training algorithm. Each resultant 
network was trained for one thousand epochs, with the 
learning rate and momentum again set to 0.5 each, and the 
training data set being rebuilt every ten epochs. The GA 
was run nine times over each of the phonemes. The mean 
classification accuracy of the GA designed FuNNs is 
displayed in fig.1. 
     Overall, the best results have been obtained with the 
use of EFuNNs. The large number of rule nodes in the 
EFuNNs shows the variation between the different 
pronunciations of the same words by the four reference 
speakers. EFuNNs require four to six order of magnitude 
less time for training per example (see fig.2).   
      Experiment 3. Sleep eco training. The trained in 
experiment 2 EFuNNs on positive data, are further trained 



on negative data as stored in the other EFuNN modules 
(sleep eco training [5]). The same accuracy is achieved as 
in EFuNNp on positive data, but here 100% accuracy is 
achieved on the negative data.    
 
  FuNN GFuNN EFuNN EFuNNp 
/I/ 32%(98) 57% (97) 94% (100) 94% (98) 
/e/ 80%(94) 81% (95) 77% (100) 87% (87) 
ae 52%(96)  72% (96) 90% (100) 90% (97) 
/i/ 5% (99) 18% (98) 62% (100) 70% (94) 

 Figure 1. True positive and true negative (in brackets)  
classification accuracy 
 
6.4. On-line adaptation of phoneme EFuNNs on new 
accent data 
Adaptation of a phoneme module to a new speaker's data 
takes place when this module is identified for on-line 
adaptation by the higher-level decision module according 
to the ECOS framework and the framework presented in 
[3]. Adaptation in EFuNNs is not different from its usual 
training (evolving) procedure. This is illustrated in the 
following experiment. 
     Experiment 4. Adaptation of the /I/ phoneme 
EFuNN. The /I/ phoneme EFuNN that evolved in 
experiment 1, was tested on a new speaker's phoneme /I/ 
data taken from the pronounced by the new speaker word 
"sit". The /I/ EFuNN did not recognise any of the 10 new  
input vectors. The EFuNN was further evolved with the 
use of the 10 positive input vectors. After that, the 
EFuNN increased its rule nodes from 361 to 369 and 
recognised 9 out of  10 new input vectors.  

4. Conclusions  
The EFuNNs introduced in the paper have the following 
features: (1) Incremental, (possibly 'one shot') learning; 
(2) On-line adaptation; (3) 'Open' structure; (4) Learning 
is accomplished in the same ways for both supervised and 
unsupervised modes;(5) Multi-level, multi-modular, 
hierarchical organisation; (6) Allowing for time and space 
representation based on biological plausibility; (7) Rule 
extraction and rule insertion. 
 
References 
1. Cole, R., et al. The Challenge of Spoken Language 

Systems: Research Directions for the Nineties, 
IEEE Trans. on Speech and Audio Processing, 
vol.3, No.1, 1-21, 1995. 

2. Jang, R. "ANFIS: adaptive network-based fuzzy 
inference system", IEEE Trans. on Syst.,Man, 
Cybernetics, 23, 665-685 (1993). 

3. Kasabov, N. "A framework for intel ligent 
conscious machines uti l ising fuzzy neural 
networks and spatial temporal maps and a case 
study of multil ingual speech recognition", in: 
Amari, S. and Kasabov, N. (eds) Brain-like 
computing and intelligent information systems, 
Springer, 106-126 (1997) 

4. Kasabov, N. Foundations of Neural Networks, 
Fuzzy Systems and Knowledge Engineering, The 
MIT Press, CA, MA (1996). 

5. Kasabov, N. ECOS: A framework for evolving 
connectionist systems and the eco learning paradigm, 
Proc. of ICONIP'98, Kitakyushu, Oct. 1998 

6. Kasabov, N., Kozma, R., Kilgour, R., Laws, M., 
Taylor, J., Watts, M. and Gray, A. "A Methodology 
for Speech Data Analysis and a Framework for 
Adaptive Speech Recognition Using Fuzzy Neural 
Networks". In: Proc. of ICONIP'97, Springer,  
Singapore (1997). 

7. Lin, C.T.  and C.S. G. Lee, "Neuro Fuzzy Systems",  
Prentice Hall (1996). 

8. McClelland, J., B.L. McNaughton, and R.C. Reilly, 
"Why there are Complementary Learning Systems in 
the Hippocampus and Neocortx: Insights from the 
Successes and Failures of Connectionist Models of 
Learning and Memeory", CMU Technical Report 
PDP.CNS.94.1, March, 1994 

9. Quartz, S.R., and Senowski, T.J. The neural basis of 
cognitive development: a constructivist manifesto, 
Behavioral and  Brain Science, in print 

10. Reed, R., "Pruning algorithms - a survey” , IEEE 
Trans. Neural Networks, 4 (5) 740-747 (1993). 

11. Sinclair, S., and Watson, C. "The Development of the 
Otago Speec h Database". In Kasabov, N. and 
Coghill, G. (Eds.), Proceedings of ANNES ’95, Los 
Alamitos, CA, IEEE Computer Society Press (1995). 

12. Yamakawa, T., H. Kusanagi, E. Uchino  and T.Miki, 
"A new Effective Algorithm for Neo Fuzzy Neuron 
Model", in: Proceedings of Fifth IFSA World 
Congress,  1017-1020 (1993) 

13. Watts, M., and Kasabov, N. Genetic algorithms for 
the design of fuzzy neural networks, in Proc. of 
ICONIP'98, Kitakyushu, Oct. 1998  

 FuNN GAFuNN EFuNN EFuNNpos.examp. EFuNNsleep-eco 
/I/ 2596/18.107 616/10.1010 28960/60.103 7200/14.103 14000/30.103 
/e/ 2596/18.107 1045/14.1010 31680/62.103 7200/14.103 14000/30.103 
/ae/ 2596/18.107 847/11.1010 29040/61.103 8720/15.103 17000/35.103 
/i/ 2596/18.107 946/12.1010 31520/62.103 8160/15.103 16000/34.103 

Figure 2. The  size of the NN in number of connections and / the approximate time for training  per example (in relative 
units, representing the number and the complexity of the calculations )  


