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Abstract. Real membership authentication applications require ma-
chines to learn from stream data while making a decision as accurately as
possible whenever the authentication is needed. To achieve that, we pro-
posed a novel algorithm which authenticated membership by a one-pass
incremental principle component analysis(IPCA) learning. It is demon-
strated that the proposed algorithm involves an useful incremental fea-
ture construction in membership authentication, and the incremental
learning system works optimally due to its performance is converging to
the performance of a batch learning system.

1 Introduction

Membership authentication problem [1] can be depicted as follows. Consider a
certain human group G with N members, which is the universal set. If there
exists an arbitrary subgroup M such that M ⊂ G and |M | < N/2, then it is
a membership group, and the remaining peoples M̄ = G − M makes a non-
membership group. Thus, membership authentication problem is to distinguish
the membership class M from the non-membership class M̄ in the human group.

Obviously, the membership authentication by face classification can be sim-
ply treated as a 2-class classification problem, in which either member or non-
member is judged by the system as a human tries to get authentication. How-
ever, in the real situation of online membership authentication, the difficulties
of the problem are as follows, (1)Both the size of membership/non-membership
group and the members in the membership group/non-membership group are
dynamically changed. (2)There are little within-class similarities, either for the
membership class or for the nonmembership class. (3)Face images for training
are provided as a stream dataset, which means that except for an initial dataset,
other datasets are added incrementally.

To deal with the first three points of difficulty, our previous work [1] pro-
posed an SVM ensemble method for membership authentication in dynamic
face groups. To achieve a dynamical authentication, we performed the mem-
bership authentication in terms of binary classification without revealing the



individual’s identity. To deal with the classification difficulty from little within-
class similarity, we used a SVM ensemble [2] combining several binary SVM
classifiers. Here, towards solving the third difficulty, we introduce a algorithm of
one-pass incremental membership authentication(IMA).

2 Incremental Membership Authentication: Problem

Definition

Given M = {xi} is a membership face group of G, and M̄ = G−M is the non-
membership face group, then membership authentication by face classification
can be depicted by a typical binary classification problem as,

f(x) =

{

1 if x ∈M ,
−1 otherwise.

(1)

Suppose f can be implemented by a specific classification model C with a
set of parameters W = {w1, w2, ...wξ}, where ξ is determined by the used model
in practice. In this paper, we simply use a K-NN classification model, then G
represents the K-NN computation, and w is the prototypes (reference centers).

For the batch learning of Eq.(1), the whole training dataset is given before
learning is started. The learning procedure can be illustrated as the following
formula,

C(w1, w2, ...wξ)← Train(M, M̄). (2)

In contrast to the batch learning mode, incremental learning samples are
provided as a stream of data. It follows that the incremental learning must
be a procedure of recursive learning that can memorize the new coming faces,
while not forget the faces that are already learned before. Thus the incremental
authentication can be formulated as a recursive computation,

C(wt
1, w

t
2, ...w

t
ξ)← (3)

Train(C(w
(t−1)
1 , w

(t−1)
2 , ..., w

(t−1)
ξ ),Mt, M̄t)

where t identifies the current time, Mt and M̄t denote current training set of
membership and non-membership, respectively.

It is possible to apply batch learning method to learn stream data. But
that requires system always to keep the previous training data and perform a
repeating learning from scratch. The continually accumulating data might cause
a memory disaster for the system.

3 One-pass Incremental Learning

3.1 Incremental Principal Component Analysis (IPCA)

Since the original PCA is not suited for incremental learning purposes, Hall and
Martin devised a method to update eigenvectors and eigenvalues in an incre-
mental way [4].



Assume that N training samples xi ∈ Rn (i = 1, · · · , N) have been presented
so far, and an eigenspace model Ω = (x,U ,Λ, N) is constructed by calculating
the eigenvectors and eigenvalues from the covariance matrix of xi, where x is
a mean input vector, U is a n × k matrix whose column vectors correspond to
the eigenvectors, and Λ is a k×k matrix whose diagonal elements correspond to
the eigenvalues. Here, k is the number of dimensions of the current eigenspace
that is often determined such that a specified fraction of energy in the eigenvalue
spectrum is retained.

Let us consider the case that the (N + 1)th training sample y is presented.
The addition of this new sample will lead to the changes in both of the mean
vector and covariance matrix; therefore, the eigenvectors and eigenvalues should
also be recalculated. The mean input vector x is easily updated as follows:

x′ =
1

N + 1
(Nx + y) (4)

Therefore, the problem is how to update the eigenvectors and eigenvalues.
When the eigenspace model Ω is reconstructed to adapt to a new sample,

we must check if the dimensions of the eigenspace should be changed or not. If
the new sample has almost all energy in the current eigenspace, the dimensional
augmentation is not needed in reconstructing the eigenspace. However, if it has
some energy in the complementary space to the current eigenspace, the dimen-
sional augmentation cannot be avoided. This can be judged from the norm of
the following residue vector h:

h = (y − x)−Ug (5)

where g = UT (y − x). When the norm of the residue vector h is larger than
a threshold value η, it must allow the number of dimensions to increase from k
to k + 1, and the current eigenspace must be expanded in the direction of h.
Otherwise, the number of dimensions remains the same.

It has been shown that the eigenvectors and eigenvalues should be updated
based on the solution of the following intermediate eigenproblem [4]:

( N

N + 1

[

Λ 0
0T 0

]

+
N

(N + 1)2

[

ggT γg

γgT γ2

]

)

R = RΛ′ (6)

where γ = hT (y − x), R is a (k + 1) × (k + 1) matrix whose column vectors
correspond to the eigenvectors obtained from the above intermediate eigenprob-
lem, Λ′ is the new eigenvalue matrix, and 0 is a k-dimensional zero vector. Using
this solution R, we can calculate the new n× (k + 1) eigenvector matrix U ′ as
follows:

U ′ = [U , h]R (7)

where

h =

{

h/‖h‖ if ‖h‖ > η
0 otherwise.

(8)



As we can see from Eq. (7), R operates as a rotation of the eigenvectors; we will
call R a rotation matrix. Note that if h = 0, R degenerates into a n× k matrix;
that is, the dimensions of the updated eigenspace remains the same as those of
the previous eigenspace.

3.2 Evolving Clustering Method (ECM)

ECM is a fast one-pass algorithm for dynamic clustering of an input stream
of data, where there is no predefined number of clusters. This algorithm is a
distance-based clustering method where the cluster centers (called “prototypes”)
are determined online such that the maximum distance, MaxDist, between an
input xi and the closest prototype cannot be larger than a threshold value, Dthr.
The ECM algorithm can be seen in [3].

3.3 The Proposed Method

As stated in [4], IPCA is utilized for reducing the dimensions of input data and
constructing an appropriate feature space (i.e., eigenspace) based on an incoming
data stream. In IPCA, depending on input data, the following two operations
are carried out: eigen-axes rotation and dimensional augmentation of a feature
space. On the other hand, ECM can evolve the prototypes which correspond to
the representative points in the feature space constructed by IPCA. Hence, when
the rotation and dimensional augmentation are carried out, all prototypes must
be modified so as to keep consistency between the old and new eigenspaces.

When only the rotation is needed, each prototype pj is easily updated by
multiplying by the rotation matrix R as follows:

pnew
j = RT pj , for j = 1, · · · , l. (9)

where l is the number of prototypes. On the other hand, when the dimensional
augmentation as well as the rotation is needed, the prototypes are not easy to
be updated because the current prototypes have already lost information in the
augmented complementary eigenspace. There are at least two methods to update
prototypes. One is to approximate them as follows:

pnew
j ' RT [pT

j , 0]T , for j = 1, · · · , l (10)

where [pT
j , 0]T is a k + 1 dimensional column vector which is given by adding

a zero element to the current prototype pj . Another method is to define the
following 2-fold prototypes (pj ,p

∗

j ), where p∗

j is the original vector in the in-

put space associated with the prototype pj ; i.e., pj = UT p∗

j is hold for these
prototypes. When the dimensional augmentation occurs, the new prototypes are
updated using p∗

j instead of pj as follows:

pnew
j = RT UT p∗

j , for j = 1, · · · , l (11)



Note that the new prototypes obtained by Eq. (10) are only an approximation
to those obtained by Eq. (11). However, if the approximation error could be
ignored, the first method is a good choice in the terms of memory costs because
it does not require keeping the p∗

j prototype. Let us assume that a small number
of initial training data is given to form an initial eigenspace. We propose the
following unsupervised one-pass incremental learning algorithm,

Step 0: Calculate the eigenvector matrix U and eigenvalue matrix Λ from the
covariance matrix of initial training data. Calculate the projection of training
data xi into the eigenspace to obtain the feature vectors x̃i. Apply ECM to
the feature vectors, and keep the selected two-fold prototypes (pj ,p

∗

j ).
Step 1: Apply IPCA to a new training sample xi and the current eigenspace

model Ω = (x,U ,Λ, N) as follows:
1. Solve an intermediate eigenproblem in Eq. (6) to obtain a rotation matrix

R and an eigenvalue matrix Λ′.
2. Update the mean input vector x and eigenvector matrix U ′ based on

Eqs. (4) and (7), respectively.
3. Increase the total number of training samples N by one.

Step 2: Add xi to a training set S, and increase the size |S| of the training
set by one.

Step 3: If |S| is larger than a certain value B, go to Step 4. Else, go back to
Step 1.

Step 4: If the dimensional augmentation is not needed, update all the current
prototypes pj based on Eq. (9). Else, update them based on Eq. (11).

Step 5: For all training samples xi in S, calculate the feature vectors x̃i as
follows:

x̃i = U ′T xi, for i = 1, · · · , B. (12)

Step 6: Initialize the training set S.
Step 7: Apply ECM to the feature vectors x̃i (i = 1, · · · , B), and keep the

selected two-fold prototypes (pj ,p
∗

j ).
Step 8: Go back to Step 1.

When a query sample is presented for classification purpose, the distances to all
prototypes are calculated, and then the k nearest neighbor (k-NN) method is
applied to determine the class.

4 Experiment Results and Discussions

4.1 Training

We perform various experiments to evaluate the proposed membership authen-
tication technique using a benchmark MPEG-7 face dataset, which consists of
1,355 face images of 271 persons. (5 different face images per person are taken).
We randomly selected a certain number of persons among 271 persons and as-
signed them as the membership group. The remaining persons are assigned as the
non-membership group. To simulate the procedure of incremental membership
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Fig. 1. Example of eigenspace variations.

authentication, we used a data division as follows: at each step, 4 out of 5 face
images of each person are used for training, and the remaining 1 face for test.
The learning procedure is composed of an initial learning phase and numbers
of incremental learning stages. For the convenience of performance evaluation,
except for the initial training dataset where we used 5% of 271 persons (i.e., 20
images), all the other stage dataset are set as 5 persons for incremental learning
at each stage, where both the percentage and the stage size may vary. Here,
selecting a small percentage is just for a more distinct difference between PCA
and IPCA on feature deriving.

We implemented the proposed one-pass incremental learning algorithm on
the above simulated stream data. We observed that rotation and augmenta-
tion happen alternately and frequently during the incremental learning process.
As rotation happening, eigenvectors are rotated. Fig. 1 (A) is an example of
eigenspace rotation. As we can see, the eigenfaces are changed between two in-
cremental learnings, but the number of eighenfaces are kept the same. Whereas
as augmentation happening, since it is usually accompanied by the happening of
rotation, the eigenfaces are not only rotated, but also increased in the number.
Fig. 1 (B) is an example of eigenspace augmentation with rotation.

4.2 Comparison of Results

Fig.2 shows the time courses of the authentication accuracy in the case of 50
persons are randomly selected as members. Where we carried out a compar-
ison among three methods, the proposed one-pass IMA, IMA with PCA and
SVM ensemble [1], and the results were represented by three curves in the fig-
ure respectively. As can be seen, the performance of incremental membership
authentication with IPCA is stable even if the incremental learning for new
member/non-member proceeds. While with no incremental feature construction
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Fig. 2. Authentication comparison among IMA-IPCA, IMA-PCA and SVM ensemble

(using PCA), the system does not have such stability. As it is shown in the figure,
some fluctuations appear in the curve of IMA-PCA. However, the performance of
IMA-IPCA is slightly lower than that of the SVM ensemble in which the learning
is conducted in a batch mode by using the whole of the training dataset. We can
see that the curves of IMA-IPCA and SVM ensemble in the figure become closer
as the learning is extended over time. It indicates that the proposed incremental
system is convergent, and it can perform classification with the same accuracy
as the batch system do, as long as a incremental learning is carried on.

5 Conclusions

In this paper, we proposed an algorithm of one-pass incremental membership
authentication method by face classification. The algorithm processes a face
stream efficiently in one pass, and learns to make a decision as accurately as
possible whenever the authentication is needed. We compared the proposed
IPCA feature-derived incremental authentication with the PCA feature-derived
authentication and the traditional batch-modelling authentication, the perfor-
mance of the proposed algorithm is found to be converging to the performance
of batch learning as the learning procedure proceeds, which imply us a very
optimal incremental learning of face membership authentication.
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