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[Abstract] We have proposed a new concept for pattern classifi-
cation systems in which feature selection and classifier learning are
simultaneously carried out on-line. To realize this concept, Incre-
mental Principal Component Analysis (IPCA) and Evolving Clus-
tering Method (ECM) was effectively combined in the previous work.
However, in order to construct a desirable feature space, a threshold
value to determine the increase of a new feature is properly given
in the original IPCA. To alleviate this problem, we can adopt the
accumulation ratio as its criterion. However, in incremental situa-
tions, the accumulation ratio must be modified every time a new
sample is given. Therefore, in order to use this ratio as a criterion,
we also need to develop a one-pass update algorithm for this ratio.
In this paper, we propose an improved algorithm of IPCA in which
the accumulation ratio as well as the feature space can be updated
on-line without all the past samples. To see if correct feature con-
struction is carried out by this new IPCA algorithm, the recognition
performance is evaluated for some standard datasets when Evolv-
ing Clustering Method (ECM) is adopted as a prototype learning
method in Nearest Neighbor classifier.

[Content Areas] Machine learning, Neural networks



1 Introduction

In many real-world applications such as pattern recognition and time-series pre-
diction, we often confront difficult situations where a complete set of training
samples is not given in advance. In face recognition tasks, for example, human
faces have large variations depending on expressions, lighting conditions, make-
up, hairstyles, and so forth. When a human is registered in a person identification
system, it is difficult to consider all variations in face images in the first place
[1]. Another difficulty in the realistic recognition problems lies in the uncertainty
of data distribution; that is, we cannot know what training samples will appear
in the future. Hence, it is quite difficult to extract essential features only from
initially given training samples.

To solve these problems, we should select appropriate features on-line based
on the property of an input data stream. This means that not only classifier
but also feature space must be incrementally trained. For this purpose, a new
concept of incremental learning have been proposed in which the feature selection
and classifier learning are simultaneously carried out on-line [2, 3]. One of the
great advantages in this concept is that classification systems can improve their
performance constantly even if an insufficient number of training samples are
given at the early stage, often resulting in inappropriate selection of features
and poor classifier performance.

To realize the above two desirable characteristics in recognition systems,
we have proposed a one-pass incremental learning scheme which consists of In-
cremental Principal Component Analysis (IPCA) [4] and Evolving Clustering
Method (ECM) [5]. In order to construct a proper feature space, however, a
suitable threshold value to determine the dimensional augmentation should be
given in IPCA; this optimization often leads to annoying parameter search. This
paper presents a remedy for this problem by introducing the accumulation ratio
into IPCA as its criterion. Since the accumulation ratio is usually calculated
from all the given samples, in order to develop one-pass incremental learning al-
gorithm for feature space and classifier, we have to devise an incremental update
algorithm for this ratio without keeping any past training samples.

In Section 2, we briefly review the original IPCA, and then we present a
new criterion to determine eigenspace dimensionality and derive its incremental
update algorithm. Section 3 describes the proposed learning scheme for both fea-
ture space and classifier. In Section 4, the proposed incremental learning scheme
is evaluated for the three standard datasets in UCI Machine Learning Reposi-
tory. Section 5 summarizes the facts we’ve done here and denotes our remaining
future works.

2 Incremental Principal Component Analysis (IPCA)

2.1 Original IPCA Algorithm

Principal Component Analysis (PCA) is one of the most popular and powerful
feature extraction techniques in pattern classification problems. Although the



original PCA is not suited for incremental learning purposes, Hall and Martin
have devised a method to update eigenvectors and eigenvalues in an incremental
way [4].

Assume that N training samples xi ∈ Rn (i = 1, · · · , N) have been presented
so far, and an eigenspace model Ω = (x̄,U ,Λ, N) is constructed by calculating
the eigenvectors and eigenvalues from the covariance matrix of xi, where x̄ is a
mean input vector, U is a n× k matrix whose column vectors correspond to the
eigenvectors, and Λ is a k×k matrix whose diagonal elements correspond to the
eigenvalues. Here, k is the number of dimensions of the current eigenspace.

Let us consider the case that the (N + 1)th training sample y is presented.
The addition of this new sample will lead to the changes in both of the mean
vector and covariance matrix; therefore, the eigenvectors and eigenvalues should
also be recalculated. The mean input vector x̄ is easily updated as follows:

x̄′ =
1

N + 1
(N x̄ + y). (1)

The problem is how to update the eigenvectors and eigenvalues.
When the eigenspace model Ω is reconstructed to adapt to a new sample,

we must check if the dimensions of the eigenspace should be changed or not. If
the new sample has almost all energy in the current eigenspace, the dimensional
augmentation is not needed in reconstructing the eigenspace. However, if it has
some energy in the complementary space to the current eigenspace, the dimen-
sional augmentation cannot be avoided. This can be judged from the norm of
the following residue vector h:

h = (y − x̄) − Ug (2)

where
g = UT (y − x̄). (3)

Here, T means the transposition of vectors and matrices. When the norm of the
residue vector h is larger than a threshold value η, it must allow the number
of dimensions to increase from k to k + 1, and the current eigenspace must be
expanded in the direction of h. Otherwise, the number of dimensions remains
the same.

It has been shown that the eigenvectors and eigenvalues should be updated
based on the solution of the following intermediate eigenproblem [4]:

( N

N + 1

[
Λ 0
0T 0

]
+

N

(N + 1)2

[
ggT γg
γgT γ2

] )
R = RΛ′ (4)

where γ = h̃
T
(y − x̄), R is a (k + 1) × (k + 1) matrix whose column vectors

correspond to the eigenvectors obtained from the above intermediate eigenprob-
lem, Λ′ is the new eigenvalue matrix, and 0 is a k-dimensional zero vector. Using
the solution R, we can calculate the new n × (k + 1) eigenvector matrix U ′ as
follows:

U ′ = [U , ĥ]R (5)



where

ĥ =
{

h/‖h‖ if ‖h‖ > η
0 otherwise. (6)

Here, η is a small threshold value which is set to zero in the original IPCA [4].
As you can see from Eq. (5), R operates to rotate the eigenvectors; hence, let
us call R a rotation matrix in the following. Note that if ĥ = 0, R degenerates
into a n × k matrix; that is, the dimensions of the updated eigenspace remains
the same as those of the previous eigenspace.

2.2 A New Criterion for Increasing Eigenspace Dimensionality

As seen in Eq. (6), the dimensional augmentation is carried out whenever the
norm of a residue vector is larger than a threshold value η. However, this is not a
good criterion in practice because a suitable threshold can be varied depending
on the magnitude of input values. If the threshold is too small, we cannot get
an efficient feature space with small dimensions; this may result in deteriorating
generalization performance and computational efficiency.

To reduce this dependency in determining appropriate feature space dimen-
sions, the following accumulation ratio is often used as its criterion:

A(k) =
∑k

i=1 λi∑n
j=1 λj

(7)

where λi is the ith largest eigenvalue, k and n are the numbers of dimensions
of the current feature space and input space, respectively. By specifying an ap-
propriate threshold value θ, we can determine the feature space dimensions by
searching for a minimum k such that A(k) > θ holds. In general, the update of
Eq. (7), cannot be done without the training samples given previously. This is a
serious problem when we device a one-pass incremental learning algorithm. To
solve this problem, we propose an incremental update algorithm of A(k) without
keeping all the past training samples.

First let us consider the numerator of Eq. (7). Using the fact that the to-
tal amount of eigenvalues is equivalent to the summation of variances σ2

i , the
numerator is given by

k∑
i=1

λi =
k∑

i=1

σ2
i =

1
N

k∑
i=1

N∑
j=1

{uT
i (x(j) − x̄)}2 (8)

where ui is the ith column vector of U .
Assume that a new sample y is given, the new mean uT

i x̄′ of feature values
on ui is calculated as follows:

uT
i x̄′ =

1
N + 1

uT
i (N x̄ + y) (9)



From Eqs. (8) and (9), the total amount of new eigenvalues is given by

k∑
i=1

λ′
i =

k∑
i=1

σ′2
i =

k∑
i=1

1
N + 1

[ N∑
j=1

{uT
i (x(j) − x̄′)}2 + {uT

i (y − x̄′)}2
]

=
N

N + 1

k∑
i=1

σ2
i +

N

(N + 1)2

k∑
i=1

{uT
i (y − x̄)}2

=
N

N + 1

k∑
i=1

λi +
N

(N + 1)2
‖UT

k (y − x̄)‖2 (10)

where Uk = {u1, · · · ,uk}. In the similar manner, the denominator in Eq. (7) is
also obtained as follows:

k∑
i=1

λ′
i =

N

N + 1

n∑
i=1

λi +
N

(N + 1)2
‖y − x̄‖2. (11)

Then, the following new accumulation ratio A′(k) is calculated from Eqs. (10)
and (11):

A′(k) =
N(N + 1)

∑k
i=1 λi + N‖UT

k (y − x̄)‖2

N(N + 1)
∑n

i=1 λi + N‖y − x̄‖2
(12)

Note that no past samples are needed for the incremental update of A′(k) here.
In the proposed method, the dimensional augmentation is judged from the

accumulation ratio A(k). Hence, the new eigenvector matrix U ′ in Eq. (5) is
modified as follows:

U ′ = [U , ĥ]R (13)

where

ĥ =
{

h/‖h‖ if A(k)< θ
0 otherwise. (14)

Here, θ is a threshold value.

3 Proposed Learning Scheme

3.1 Incremental Prototype Update for k-NN classifier

As stated in Section 2, IPCA is utilized for reducing the dimensions of input
data and constructing an appropriate feature space (i.e., eigenspace) based on
an incoming data stream. In IPCA, depending on input data, the following two
operations are carried out: eigen-axes rotation and dimensional augmentation of
a feature space. On the other hand, ECM can evolve the prototypes which cor-
respond to the representative points in the feature space constructed by IPCA.
Hence, when the rotation and dimensional augmentation are carried out, all pro-
totypes must be modified so as to keep the consistency between the old and new
eigenspaces.



Let the jth prototype in the current eigenspace Ω = (x̄,U ,Λ, N) be p̃j

(j = 1, · · · , L) and let the corresponding prototype in the original input space be
pj . Here, L is the number of prototypes. For these two prototypes, the following
relation holds:

p̃j = UT (pj − x̄). (15)

Assume that the (N + 1)th sample y is added and the eigenspace Ω is updated
by Ω′ = (x̄′,U ′,Λ′, N + 1). Substituting Eqs. (1) and (5) into Eq. (15), the
updated prototypes p̃′

j are given as follows [3]:

p̃′
j = U ′T (pj − x̄′) = RT

[ p̃j

ĥ
T
(pj − x̄)

]
+

1
N + 1

U ′T (x̄ − y). (16)

When no dimensional augmentation is needed, ĥ = 0 holds from Eq. (6).
Then, Eq. (16) reduces to

p̃′
j = RT p̃j +

1
N + 1

U ′T (x̄ − y) (17)

where no information on pj is needed in the prototype update. However, when
the dimensional augmentation as well as the rotation occurs, the original proto-
types pj are necessary for the exact calculation of the new prototype p̃′

j . That
is to say, unless we keep the original prototypes in memory, it is impossible to
carry out this prototype update.

To do that, we have proposed the approximation for the first term in the
right hand side of Eq. (16):

p̃′
j � RT [p̃T

j , 0]T +
1

N + 1
U ′T (x̄ − y) (18)

where [p̃T
j , 0]T is a (k + 1)-dimensional column vector which is given by adding

a zero element to the current prototype p̃j . This approach is efficient in memory
use, but we have to mind the approximation error when the accumulation ratio
for the feature space is not so large.

3.2 Learning Algorithm

Let us assume that a small number of training samples are given in advance
to form an initial eigenspace. Then, the proposed one-pass incremental learning
algorithm is shown below:

Step 0: Calculate the eigenvector matrix U and eigenvalue matrix Λ from
the covariance matrix of initial training samples. Calculate the projection of
all the initial training samples xi into the eigenspace to obtain the feature
vectors x̃i. Apply ECM (see the details in [6]) to these feature vectors, and
obtain the prototypes p̃j .

Step 1: Apply IPCA to the (N+1)th training sample y and update the current
eigenspace model Ω = (x̄,U ,Λ, N) as follows:



1. Solve an intermediate eigenproblem in Eq. (4) to obtain a rotation matrix
R and an eigenvalue matrix Λ′.

2. Update the accumulation ratio A′(k) based on Eq. (12).
3. Update the mean input vector x̄′ and eigenvector matrix U ′ based on

Eqs. (1) and (13), respectively.
4. Increase the total number of training samples N by one.

Step 2: If the dimensional augmentation is not needed in IPCA, update all
the current prototypes p̃j based on Eq. (17). Otherwise, update them based
on Eq. (18).

Step 3: For the training sample y, calculate the feature vectors ỹ using the
updated eigenvector matrix U ′ and mean vector x̄′ as follows:

ỹ = U ′T (y − x̄′) (19)

Step 4: Apply ECM to the feature vectors ỹ, and obtain the updated proto-
types p̃j′ .

Step 5: Go back to Step 1.

When a query input is presented for classification purpose, the distances
to all the prototypes are calculated, and then the k nearest neighbor (k-NN)
method can be applied to determine the class. Note that the classification process
is carried out on-line during the training of the feature space and prototypes.
However, we do not need any modification on the k-NN classifier even if the
rotation and augmentation are carried out, because this classifier uses only the
distance between a query input and a prototype.

4 Experiments

4.1 Experimental Setup

To investigate the effectiveness of the proposed incremental learning scheme,
the performance is evaluated for the three standard datasets in UCI Machine
Learning Repository [7]: Segmentation data, Vowel data, and Sonar data. The
dataset information is summarized in Table 1.

In the Sonar dataset, the training and test samples are not divided. Hence,
we split this dataset into two halves, and the evaluations for the test samples
are conducted through two-fold cross-validation. The item ‘accuracy’ in Table 1
means the highest accuracy shown on the UCI web site [7].

Before the learning starts, first we construct an initial feature space (eigenspace)
using a small portion of training samples; that is, these training samples are used
for calculating eigenvectors and their eigenvalues through conventional PCA.
While the incremental learning is carried out, training samples are randomly
drawn from the rest of the training dataset one by one, then the eigenspace is
updated by IPCA shown in Section 2. Since the events of incremental learning
may not happen at regular time intervals, we use the term incremental learning
stages instead of the usual time scale. Here, the number of learning stages is
equivalent to the number of all training samples that are not used as the initial
dataset.



Table 1. Evaluated UCI datasets. The item ‘accuracy’ means the highest accuracy
shown on the UCI web site [7].

name input dim. class train. data test data accuracy [%]

Segmentation 19 7 210 2100 -

Vowel 10 11 528 462 56

Sonar 60 2 208 - 83

4.2 Study on Threshold Value η

In the original IPCA, the threshold value η in Eq. (6) is set to zero. However,
since the norms of residue vectors are rarely zero in practice, a small value is
usually set to η to avoid generating a redundant feature space. As easily expected,
if the value is too large, a compact feature space is acquired but the recognition
performance may get worse due to the lost of useful information. Generally, it is
not easy to find a suitable η and it may be varied depending on the magnitude
of input data.

As a preliminary experiment, let us see the influence of η to the recognition
performance. Here, Nearest Neighbor (NN) classifier is used for evaluating the
recognition performance1. The prototypes for NN classifier are trained by ECM
in which the same training dataset as in IPCA is used for the training. The train-
ing of the feature space and prototypes are conducted based on the procedure
shown in 3.2.

Figure 1 shows typical time courses of recognition accuracy, accumulation
ratio, and feature space dimensions at each learning stage. In these experiments,
the threshold values η are varied from 0.1 to 1.2, and 10% of the entire training
samples are used for obtaining initial eigen spaces; that is, the remaining 90%
samples are trained one by one in the following incremental stages.

As you can see from Fig. 1, the influences of η to the recognition accuracy
and the generated feature space are quite different depending on the datasets. In
Sonar data, it seems that the threshold values (η = 0.1, 0.6, 1.2) greatly influence
to the construction of feature spaces. If η = 1.2, the small dimensional feature
space is generated but the recognition accuracy is deteriorated due to the low
accumulation ratio. If η = 0.1, the best accuracy is acquired but the dimensions
of the feature space become very large. On the other hand, for Vowel data and
Segmentation data, there are less influence of η to both accuracy and feature
space dimensions. These results indicate that the threshold value η should be
optimized for each dataset.

The proposed method mentioned in 3.2 can be adopted to avoid such a
nuisance optimization. In the next experiment, the recognition performance and
appropriateness of acquired feature spaces are evaluated for the modified IPCA
using the above three UCI datasets.

1 Although k-NN classifier can also be adopted here, NN classifier outperforms it in
our preliminary experiments. Hence, we show only the result of NN classifier.
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Fig. 1. Typical time courses of (a) recognition accuracy [%], (b) accumulation ratio
[%], and (c) feature space dimensions for the three UCI datasets when the original
IPCA is applied.

4.3 Evaluation of Proposed IPCA

Even in the proposed IPCA, a threshold value θ in Eq. (14) for the accumulation
ratio must be properly given in order to specify how much signal energy should
be retained to construct effective feature spaces. To find appropriate threshold
values, θ is varied from 0.85 to 0.999 here. In general, the performance of incre-
mental learning depends on the order of giving training samples. Hence, we shall
evaluate the performance averaged over ten different learning conditions (i.e.,
ten different streams of training samples). To see the effectiveness of incremen-
tal feature construction, the evaluation for initial feature spaces is also carried
out for comparative purposes. More concretely, the eigenvectors are selected only
from an initial training set such that the accumulation ration is over 0.999, and
the feature space spanned by these eigenvectors is fixed over the entire learning
stages but the prototype learning is carried out by ECM.



Table 2. Recognition accuracy [%], accumulation ratio A(k), and dimensions of feature
space k at the final incremental learning stage for the three UCI datasets: (a) Sonar
data, (b) Vowel, and (c) Segmentation. In PCA, the feature space is calculated only
from an initial training set, and then it is fixed over the entire learning stages.

(a) Sonar

θ=0.85 θ=0.9 θ=0.95 θ=0.999 PCA

Accuracy [%] 77.8 79.4 80.0 79.4 76.2

A(k) [%] 85.6 90.4 95.2 99.9 70.9

k 15.3 19.5 26.5 53.5 9

(b) Vowel

θ=0.85 θ=0.9 θ=0.95 θ=0.999 PCA

Accuracy (%) 55.4 56.3 57.8 56.0 56.5

A(k) (%) 87.2 92.3 96.6 100 100

k 6.1 7.2 8.2 10 10

(c) Segmentation

θ=0.85 θ=0.9 θ=0.95 θ=0.999 PCA

Accuracy (%) 79.4 80.9 81.4 87.3 79.5

A(k) (%) 94.3 96.8 97.8 100 86.4

k 4.4 4.6 4.8 8.6 6

Tables 2(a)-(c) show the recognition accuracy, accumulation ratio A(k), and
dimensions of feature space k at the final incremental learning stage for the
three UCI datasets. In any case, the percentage of initial training samples is set
to 10%.

As seen from the results, we can find some threshold values that gives better
final recognition accuracy as compared with the results of PCA. Moreover, this
final accuracy increases when a large threshold value θ is given. For Sonar data
and Vowel data, it seems that there is an optimal value for θ around 0.95.
Comparing the feature space dimensions k in these two cases with the previous
results in Fig. 1 (see the cases of η = 0.1 or 0.6), we can see that high-performance
compact feature spaces are constructed by the proposed IPCA2. It is considered
that this result comes from the property of the proposed IPCA; that is, keeping
the accumulation ratio at a specified value throughout the learning stages seems
to be effective to construct efficient (i.e., low-dimensional) feature spaces.

For Segmentation data, on the other hand, the optimal θ is 0.999 and the
accumulation ration A(k) becomes 100%. This result shows that the optimal θ
can be different depending on the datasets. However, since we know by experience
that there is an optimal value around 0.95 in many cases, we can easily search for
the optimal value using the cross-validation. This optimization process is much
easier than the search for the optimal value of η in the original IPCA.

2 Note that the dimensions in Table 2 are averaged over the ten runs, while the result
in Fig. 1 is obtained in one of the ten runs.



5 Conclusions and Future Works

In our previous works [2, 3], we have proposed an adaptive evolving connectionist
model in which Incremental Principal Component Analysis (IPCA) and Evolving
Clustering Method (ECM) are effectively combined. This learning scheme gives
a new concept for pattern recognition systems: feature selection and classifier
learning are simultaneously carried out on-line.

In order to construct a proper feature space based on this approach, a suit-
able threshold value to determine the dimensional augmentation should be given
in the IPCA algorithm. This optimization often needs a little annoying process;
therefore, the accumulation ratio is introduced into IPCA as its criterion. To im-
plement this approach, first we devised the incremental update algorithm for the
accumulation ratio without the past training samples. Next, we presented a new
incremental learning scheme for feature space and classifier. From several exper-
iments using the three standard datasets in UCI machine learning repository,
we verified that the proposed IPCA worked well without elaborating sensitive
parameter optimization and its recognition accuracy outperforms that of the
previously proposed learning scheme [3].

There are still several open problems. One is that the computation costs for
feature space update could be expensive especially for large dimensional data
because the current IPCA algorithm must be applied to each given training
sample. To alleviate this problem, we should introduce a batch-mode learning
strategy into IPCA. Another problem is that the eigen-features are not always
effective for classification purposes. Recently kernel PCA is widely noticed as
high-performance features; hence, the extension of incremental learning approach
to kernel PCA should be our next research target.
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