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New Excitements in 2012 

 
Irwin King 

INNS Vice-President for Membership  
 

 
 

 

 

 

 
 

As the V ice-President for M embership, I  would l ike t o update y ou on a  few e xciting a nd 
important items related to INNS members. 

First, I  am thrilled to share with you once again that we now have our f irst new Autonomous 
Machine Learning (AML) Section as it was introduced in our inaugural Natural Intelligence issue.  
Being elevated from a Special Interest Group (SIG), AML Section enjoys additional benefits for 
her members in the form of  a special t rack in IJCNN (when organized by IJCNN) and a special 
issue/section in the new INNS magazine.  With this, I look forward to more SIGs be interested in 
forming new Sections in the years to come. 

Second, I  would l ike t o s hare w ith y ou s ome ne w a ctivities on S IGS and R egional Chapters 
(RCs).  T he S piking Neural Networks SIG l ed by D avid O lmsted a nd Women i n Science a nd 
Engineering led by Karla Figueiredo are our newly formed SIGs.  Based on geographical region, 

we have a  ne w India R C l ed by S uash Deb.  I n a dditional t o t he a bove, we have s everal c ommunities t hat a re under 
consideration.  T hey a re Bi ological Neural N etworks, B iomedical A pplications , B rain M odeling &  N euroscience, a nd 
Embedded and Cognitive Robotics.  Furthermore, we have China, Korea, and Thailand under consideration to form RCs to 
further promote INNS in their respective geographical areas.  These are exciting news as we continue to expand INNS' reach 
to emerging topics and new regions. 

Third, in recognition of our members' contributions our Senior Membership application process for 2012 will begin soon.  
If you have been actively participating in INNS events as a member for at least the recent five consecutive years, you could 
be eligible to be nominated for the Senior Member status.  The Call will be sent out shortly and we plan to have the senior 
membership approved by IJCNN 2012 in Brisbane, Australia this June so polish up your CV and send in your application 
accordingly. 

Lastly, we are looking for enthusiastic volunteers to help INNS with social media projects that aim to promote the society 
and her members.  We are investigating ways to improve our website and complement it with other social media sites such 
as Facebook, Twitter, etc.  If you are interested in getting involved in any of these projects, contact Bruce Wheeler or myself 
for more information. 

Please feel free to send me your inquiries and/or suggestions.  I look forward to a n existing year working together with 
you to improve further the benefits for INNS members.                                                       ■ 
 

 

A Message from the INNS Vice President for Membership 
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Abstract 

Based on  N atural Int elligence (NI) know ledge, our  go al i s to 
improve s martphone imaging a nd c ommunication c apabilities t o 
resemble hum an s ensory s ystems.  W e propos e a dding a n 
enhanced night imaging capability on t he same focal p lane a rray 
(FPA), t hus e xtending t he s pectral r ange. Com pressive s ensing 
(CS) t echnology re duces exposure t o m edical i maging a nd he lps 
spot a face in a social network. Since Candes, Romberg, Tao, and 
Donoho (CRT &D) publ ications in 2007,  300 m ore c ontributions 
have been published in IEEE. What NI does differently is mimic 
the human visual system (HVS) in both its day-night and selective 
attention communication capabilities. We consider two killer apps 
exemplars: S oftware: ge nerating vi deo Cl iff Notes; H ardware: 
designing day-night spectral camera. NI can do better CS, because 
of connectionist bui ld-in attributes: fault tolerance f illing missing 
parts; s ubspace ge neralization di scovering n ew; uns upervised 
learning improving itself iteratively. 

Keywords: U nsupervised L earning, Com pressive Se nsing, H VS, 
Smartphone, F ault T olerance, S ubspace G eneralization, M edical 
Image, Face Identification. 

1. Introduction to Compressive Sensing and 
Natural Intelligence Technologies 

Compressive Sensing: Compressive Sensing ( CS) 
technology is motivated by reducing the unneeded exposure 
of medical imaging, and finding a  sparse representation to 
spot a f ace i n social n ets.  A large c ommunity of CS ha s 
formed i n t he l ast 5  y ears, working act ively on d ifferent 
applications and i mplementation t echnologies.  The 
experience of  the I nternational Neural N etwork S ociety 
(INNS) working on traditional computational systems in the 
last de cades de veloping t he unique c apabilities of 
unsupervised l earning, cf. Sect. 2 , ca n be b eneficial t o a 
larger community, i f a co ncise t reatise of learning is made 
available. Likewise, INNS c an benefit f rom t he 
mathematical i nsights a nd e ngineering implementations o f 
CS.  

Face Spotting App: To  find a  f riend, o ne may t urn o n a 
smartphone app f or s potting a  friendly f ace a mong the  
crowd, or  s imply s urf i n Facebook.  Such a  s potting a pp 
may be built upon a massive parallel ANN System On Chip 
for face detection ( SOC-FD), w hich d etects all f aces (by 
color hue pr e-processing) i n real t ime and simultaneously 
places all f aces i n b oxes in 0.04 s econds and i dentifies 
whom is smiling and who is  not and closed eyes, focusing  

 
 
 
 
 
 
 
 
 
 
on t he s miling one (by the fuzzy l ogic post-processing).  
Each high r esolution i mage on a  s martphone has m ega 
pixels on target (pot). Each face has a smaller pot denoted 
by 𝑁 ≅ 104 . S ince t he FD-SOC c an cut eq ual-size f acial 
pictures {𝑥⃗𝑡,𝑡 = 1,2,3,4 } a t d ifferent p oses, l ikewise, t he 
other pe rson { 𝑦⃗𝑡 , 𝑡 = 1,2,3,4}, e tc., if so w ishes, forms a 
database [𝐴]𝑁,𝑚 = �𝑥⃗1, 𝑥⃗2, 𝑥⃗3, 𝑥⃗4, 𝑦⃗1,, . , 𝑧1, . �

𝑁,𝑚
 with m= 

3x4 faces.  T he a pp CS a lgorithm matches an i ncoming 
face 𝑌�⃗𝑁  with t he c losest f ace i n t he d atabase  [𝐴]𝑁,𝑚 .  
Mathematically s peaking, since t he d atabase [𝐴]𝑁,𝑚  is 
over-sampled, f inding a  m atch i s e quivalent t o f inding a  
sparse representation 𝑋⃗𝑚 of 𝑌�⃗𝑁, i.e. 𝑋⃗𝑚 has few ones (=yes) 
matched, among many mismatched zeros (=no).  

𝑌�⃗𝑁 = [𝐴]𝑁,𝑚𝑋⃗𝑚      (1) 

Yi Ma et al. of UIUC have further applied a down-sampling 
sparse matrix [Φ]m,N to the database  [𝐴]𝑁,𝑚 for the linear 
dimensionality r eduction f or r eal-time I D i n I EEE/PAMI 
2007. 

Medical Imaging App:  E mmanuel C andes of S tanford 
(formerly at Caltech), Justin Romberg of GIT, and Terrence 
Tao of UCLA [1,2] as well as David Donoho of Stanford [3] 
(CRT&D) jointly introduced the Compressive Sensing (CS) 
sparseness t heorem i n 20 07 I EEE/IT, i n or der t o s ave 
patients from unneeded exposure to medical imaging with a 
smaller n umber o f m views of e ven s maller n umber k of 
radiation exposing pixels as all-pass filter representing ones 
among z eros. T hus, CS i s n ot post-processing image 
compression; because ot herwise, the patients ha ve already 
suffered the r adiation e xposure; thus, CS h appened at the 
sensing measurement.  They adopted a p urely r andom 
sparse s ampling m ask [Φ]m,N  consisting of  𝑚 ≅ 𝑘 
number of one’s (passing the radiation) among seas of zeros 
(blocking the r adiation).   The g oal of  multiplying such a  
long horizontal r ectangular s ampling m atrix [Φ]𝑚,𝑁  is t o 
achieve the linear dimensionality r eduction from N  t o m  
(m<<N), and the reduced square matrix follows: 

𝑦⃗𝑚 = [𝐵]𝑚,𝑚𝑋⃗𝑚,       (2) 

where  𝑦⃗𝑚 ≡ [Φ]𝑚,𝑁𝑌�⃗𝑁  and  [𝐵]𝑚,𝑚 ≡ [Φ]𝑚,𝑁[𝐴]𝑁,𝑚 . 
Remarkably, given a set of sparse orthogonal 
measurements 𝑦⃗𝑚 , they r eproduced t he original resolution 
medical i mage  𝑋⃗𝑁 .  CRT &D used an iterative h ard 

Regular Paper 
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threshold ( IHT) of the largest guesstimated entries, known 
as l inear p rogramming, based o n the 𝑚𝑖𝑛. |𝑋⃗|1subject t o 
𝐸 = |𝑦⃗𝑚 − [𝐵]𝑚,𝑚𝑋⃗𝑚|22 ≤ 𝜀 , where  𝑙𝑝 -norm is de fined  
�𝑋⃗�

𝑝
≡ (∑ |𝑥𝑛|𝑝)1/𝑝𝑁

𝑛=1 .  
ANN s upervised l earning adopts t he s ame L MS errors 

energy be tween the desired outputs 𝑣⃗′𝑖 = 𝑦⃗𝑚 & the actual 
weighted ou tput  𝑣𝑖 = 𝜎(𝑢𝑖) = 𝜎(∑ �𝑊𝑖,𝑗�𝑢𝑗)𝑚

𝑗=1 . 
Neurodynamics I /O i s given  𝑑𝑢𝑖/𝑑𝑡= − 𝜕𝐸/𝜕𝑣𝑖 ; 
Lyapunov c onvergence t heorem 𝑑𝐸/𝑑𝑡 ≤ 0  is pr oved f or 
the m onotonic s igmoid l ogic 𝑑𝜎/𝑑𝑢𝑖 ≥ 0  in Sect.2.   
ANN does not use the Manhattan distance, or going around 
a city-block 𝑙1  distance at  𝑝 = 1 because i t i s known in 
ANN learning to be t oo s ensitive t o o utliers.   
Mathematically speaking, the true sparseness measure is not 
the 𝑙1-norm but  t he 𝑙0-norm: �𝑋⃗�

0
≡ (∑ |𝑥𝑛|0)1/0𝑁

𝑛=1 = 𝑘, 
counting the num ber of no n-zero el ements because only 
non-zero e ntry r aised t o zero power i s equal to 1. 
Nevertheless, a p ractical l esson from C RT&D is that t he 
𝑚𝑖𝑛.  |𝑋⃗|1subject t o 𝑚𝑖𝑛. |𝑋⃗ − 𝑌�⃗ |22  is sufficient to a void 
the computationally intractable 𝑚𝑖𝑛.  |𝑋⃗|0.  In fact, without 
the constraint of minimization 𝑙1 norm, LMS is blind to all 
possible direction co sines within the hy per-sphere g iving 
rise to the Penrose’s inverse  [𝐴]−1 ≅ [𝐴]𝑇([𝐴][𝐴]𝑇)−1; or 
 [𝐴]−1 ≅ ([𝐴]𝑇[𝐴])−1[𝐴]𝑇  (simplified by A =QR 
decomposition).  To be sure, CRT&D proved a  Restricted 
Isometry P roperty ( RIP) Th eorem, stating that a l imited 
bound on a purely random sparse sampling: ∥ [Φ]𝑚,𝑁𝑋⃗ ∥/∥
𝑋⃗ ∥≅ 𝑂(1 ∓ 𝛿𝑘), 𝑚 ≅ 1.3𝑘 ≪ 𝑁. As a  r esult, the 𝑚𝑖𝑛. 𝑙1-
norm is equivalent to the 𝑚𝑖𝑛. 𝑙0-norm at the same random 
sparseness. Such an  eq uivalent l inear p rogramming 
algorithm takes a manageable polynomial time. However, it 
is not fast enough for a certain video imaging.  

The following subtitles may h elp t hose who wish t o 
selectively speed read through ANN, NI and C S. The 
universal l anguage between man a nd m achine will b e t he 
mathematics (apology to those who seeks a popular science 
reading).   
NI Definition: NI may be defined by unsupervised learning 
algorithms running iteratively on connectionist architectures, 
naturally s atisfying fault t olerance ( FT), an d s ubspace 
generation (SG).  
Hebb Learning Rule:  If blinking traffic lights at all street 
intersections h ave b uilt-in d ata s torage f rom a ll t he 
transceivers, t hen traffic l ights f unction l ike neurons with 
synaptic j unctions. They send a nd r eceive a frequency 
modulation Morse code ranged from 30 Hz to 100 Hz firing 
rates. Physiologist D onald H ebb observed t he plasticity o f 
synaptic j unction learning.  The Hebbian r ule describes 
how to modify the traffic light blinking rate to indicate the 
degree of traffic j am a t s treet intersections.  The p lasticity 
of s ynapse m atrix �𝑊𝑖,𝑗� is adjusted i n proportion to t he 
inputs of  𝑢𝑖  from t he i -th s treet we ighted by t he output 
change, ∆𝑣𝑗 at the j-th street as the vector product code: 

Do 10: ∆𝑊𝑗,𝑖 ≈ ∆𝑣𝑗  𝑢𝑖  .        (3a) 
    10:  �𝑊𝑗,𝑖�′ = �𝑊𝑗,𝑖� + ∆𝑊𝑗,𝑖; Return.           (3b) 

An event is r epresented in the m -D subspace of a t otal 
𝑁 = 1010 D space, supported by 10 billion neurons in our 
brain.  The synergic blinking patterns of m communicating 
neurons/traffic l ights constitute t he s ubspace. The volume 
of m-D subspace m ay b e e stimated b y t he vector outer 
products called associative memory [AM] matrix inside the 
hippocampus of o ur cen tral b rain (Fig. 4 c).   Even if a  
local ne uron or t raffic l ight br oke down, t he di stributed 
associative memory (AM) can be retrieved.  This is the FT 
as the nearest neighbor classifier in a finite solid angle cone 
around e ach orthogonal a xis of  t he s ubspace; t hen, t he 
subspace generalization (SG) is going along a new direction 
that is orthogonal to the full m-D subspace. 
Unsupervised lesson learned: Supervised learning stops 
when the algorithm has achieved a desired output. Without 
knowing the desired out put, an u nsupervised learning 
algorithm doesn’t know when to stop.  Since the input data 
already h as s ome energy in i ts representation; t he 
measurement principle should not bias the input energy for 
firing s ensory s ystem reports a ccordingly. T hus, t he 
magnitude of output’s firing rates should not be changed by 
the learning weight. Note that in physics the photon energy 
field is the quadratic displacement of oscillators. Thus, the 
constraint of unsupervised l earning r equires a djusting t he 
unit weight vector on the surface of hyper-sphere of 𝑅𝑚. In 
fact, the main lesson of Bell-Sejnowski-Amari-Oja (BSAO) 
unsupervised learning a lgorithm i s t his n atural s topping 
criterion for t he given s et o f i nput vectors {𝑥⃗} ∈ 𝑅𝑁 . T he 
BSAO projection p ursuit algorithm i s merely a  r otation 
within a H yper-sphere. It s tops when t he we ight ve ctors 
�𝑊𝑖,𝑗� = [𝑤��⃗ 𝑖 ,𝑤��⃗ 𝑖′, . . ]becomes p arallel in t ime to t he i nput 
vectors o f a ny magnitude 𝑤��⃗ 𝑖||𝑥⃗𝑖.  The f ollowing stopping 
criterion o f a n unsupervised l earning will b e discovered 
thrice in Sect.2 

�𝜹𝜶,𝜷 − 𝒙𝜶𝒙𝑻𝜷�𝒙��⃗ 𝜶𝒙��⃗ 𝜷 = 𝟎, 

∆𝒘���⃗ ≡w���⃗ ′ − 𝑤��⃗ =  𝝐�𝜹𝜶,𝜷 − 𝒘���⃗ ′𝜶𝒘���⃗ ′𝑻𝜷�𝒙��⃗ 𝜶
𝑑𝐾�𝑢��⃗ 𝛽�

𝑑𝑤′�����⃗
 ,     (3c) 

where K i s a r easonable co ntrast f unction for t he s ource 
separation of t he weighted i nput  𝑢�⃗ 𝑖 = �𝑊𝑖,𝛾�𝑥⃗𝛾 . Th e 
contrast f unction c ould be ( i) t he m aximum a -posteriori 
entropy ( filtered output entropy) used in Bell &  Senowski 
algorithm i n 1 996; ( ii) t he fixed point a lgorithm of  4 -th 
order c umulant Ku rtosis ( Fast I CA) a dopted i n Hyvarinen 
& Oja in 1997; (iii) the isothermal equilibrium of minimum 
thermodynamic Helmholtz free energy (𝐵𝑟𝑎𝑖𝑛 𝑇𝑜 = 37𝑜 𝐶) 
known a s L agrange Co nstraint N eural Net, i n t erms o f 
𝑚𝑖𝑛.𝐻 = 𝐸 − 𝑇𝑜 𝑚𝑎𝑥. 𝑆  (maximum a -priori s ource 
entropy) by Szu & Hsu, 1997.   

When we w ere young, u nsupervised learning gui ded u s 
extracting sparse orthogonal neuronal representations in an 
effortless f ashion defined a t t he minimum isothermal f ree 
energy.  Subsequently, the expert systems at school 
supervised learning come in handy with these unsupervised 
mental representations. A s w e get ol der, our unsupervised 
ability f or c reative emotional s ide e-Brain i s inevitably 
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eroded a nd outweighed by  t he e xpert s ystems m atured 
mainly at the logical and left-side l-Brain.  

In this paper, we assume that the CRT&D RIP theorem 
works for both t he purely r andom s parse [Φ]𝑚,𝑁  and t he 
organized sparse [Φs]𝑚,𝑁.  A sketch of proof is given using 
the exchange entropy of Brandt & Pompe [14] (successfully 
used recently in NI magazine V1, No 1 by Morabito et al. to 
the EEG data for Alzheimer patients) for the complexity of 
organized s parseness at t he e nd of S ect. 7 . I ntuitively 
speaking, w e do not c hange t he number of o nes 
within [Φs]𝑚,𝑁 ; on ly we e ndow a  feature m eaning t o t he 
ones’ l ocations, beyond the o riginal m eaningless a ll-pass 
filtering.   In  o ther words, we f ound that the a dmissible 
ANN s torage de mands the or thogonal sparse moments of 
spotting dramatic orthogonal changes of salient features.  
Consequently, w e will n ot alter th e v alue of unk nown 
image v ector ∥ 𝑋⃗ ∥  more t han  𝛿𝑘 .  In fa ct, f or re al-time 
video, w e have bypassed random C S c oding a nd image 
recovery algorithms, an d chose i nstantaneous retrieval b y 
MPD Hetro-Associative Memory (HAM) storage defined in 
Sections 2 and 4.   

After the introduction of the goals and the approaches of 
CS, we  review ANN in Section 2; Neuroscience 101 with 
an emphasis on the orthogonal sparseness representations of 
HVS in Section 3; t he AM storage in Section 4; Software 
simulation results in Sect. 5; Unsupervised Spatial-Spectral 
CS Theory in Section 6; and Hardware design of camera in 
Section 7. The following, Sect 2, might provide the simplest 
theory of  learning f rom supervised A NN t o uns upervised 
ANN.  

2. Reviews of Artificial Neural Networks 
Traditional ANN performs supervised learning, known as a 
soft lookup table, or merely as ‘monkey sees, monkey do’. 
Marvin Minskey and Seymour Papert commented on ANN 
and Artificial Intelligence (AI) as well as extending multi-
layer f inite s tate m achine t o d o “ Ex O R” i n 1988.  This 
was about the year when INNS w as in cepted by 17 
interdisciplinary G overnors. Notably, Stephen Grossberg, 
Teuvo Kohonen, Shun-ichi Amari serve as editors in chief 
of  INNS, which w as published quarterly b y P ergamum 
Press a nd  s ubsequently, monthly by Elsevier Publisher.  
In t he l ast t wo decades, b oth I NNS a nd Co mputational 
Intelligence S ociety of I EEE have acc omplished a l ot 
(recorded i n IJCNN p roceedings). Being t he f ounding 
Secretary an d Treasurer, a f ormer P resident an d Governor 
of INNS, the author apologizes for any unintentional bias. 
Some opinions belong to all shade of grey; taking binary or 
spicy s tory a pproach i s one of t he great pe dagogical 
techniques t hat o ur t eachers George Uhlenbeck an d M ark 
Kac often did at t he R ockefeller U niversity. F or e xample, 
‘nothing w rong with t he supervised l earning e xemplars 
approach using t he l ookup t able, the curse i s only a t t he 
‘static’ or c losed loo kup table.’ A lso, ‘ this limitation o f 
supervised learning is not due to the connectionist concept, 
rather, due t o t he de eply e ntrenched “ near e quilibrium” 
concept’; Norbert Wiener developed ne ar e quilibrium 
Cybernetics in 1948 & 1961. ‘What’s missing is the ability 
to c reate a  n ew cl ass f ar a way f rom equilibrium.’ ‘I NNS 

took the out of the box, interdisciplinary approach to learn 
from t he Ne urosciences h ow t o de velop unsupervised 
learning paradigm f rom Neurobiology.’  ‘ This i s an 
important leg of NI tripod. The other two legs are the fault 
tolerance an d t he s ubspace g eneralization.’  I us ed in 
teaching but have deleted in writing. 
 
2.1 Fault Tolerance and Subspace Generalization  
Fault Tolerance (FT): The read out  of  m neuronal 
representation satisfies the fault tolerance. This is due to the 
geometry of  a  circular c one spanned i n 45𝑜 solid a ngle 
around the m-D vector axis. This central axis is defined as 
the memory state and the cone around it is its family of turf 
vectors.  Rather than precisely pointing in the same vector 
direction of m -D, a nything within the t urf family is 
recognized a s the original axis. This i s t he reason t hat t he 
read o ut is f ault t olerant. Th us, [AM] m atrix s torage can 
enjoy a soft failure in a graceful degradation fashion, if and 
only if (iff) all storage state vectors are mutually orthogonal 
within t he s ubspace; and goi ng completely out side the 
subspace in a n ew orthogonal direction t o a ll i s the 
subspace generalization (SG).  
Subspace Generalization (SG):  We i ntroduce t he i nner 
product BraCKet n otation < 𝐵𝑟𝑎 |𝐾𝑒𝑡 > =  𝐶 , in the d ual 
spaces o f < 𝐵𝑟𝑎| and  |𝑘𝑒𝑡 > , while t he o uter product 
matrix is conveniently in the reverse order �𝑤𝑗,𝑖� = |𝑣𝑗 ><
𝑢𝑖|  introduced by physicist P. Dirac. We prove the 
‘traceless outer product’ matrix storage allows SG from the 
m-D s ubspace to one bi gger m+1-D subspace.  De fined, 
the Ortho-Normal ( ON) basis i s < 𝑛’|𝑛 >= 𝛿𝑛′,𝑛 ;  𝑛,𝑛′ =
1, . .𝑚.  Then, SG is t he T race-less ON  [𝐴𝑀]𝑚,𝑚 =
∑ |𝑛 >< 𝑛| − 𝑇𝑟[𝐴𝑀]𝑚,𝑚
𝑚
𝑛=1 . Trace operator 𝑇𝑟: summing 

all d iagonal e lements is th e pr ojection op erator defined 
𝑇𝑟2 = 𝑇𝑟.  
SG Theorem: Without s upervision, a  t raceless matrix 
storage of  ON sub-space can self-determine admitting|𝑥 >
= |𝑚 + 1 >, iff < 𝑚 + 1|𝑛 >= 𝛿𝑚+1,𝑛 satisfying the fixed 
point of cycle 2 rule:  [𝐴𝑀]𝑚,𝑚

2|𝑥 > = |𝑥 >, then  
 [𝐴𝑀]𝑚+1,𝑚+1 = ∑ |𝑛 >< 𝑛| − 𝑇𝑟[𝐴𝑀]𝑚+1,𝑚+1

𝑚+1
𝑛=1 .    

                                       Q.E.D.   
AM is MPD c omputing, more t han t he nearest ne ighbor 
Fisher cl assifier. These FT &  S G a re trademarks of 
connectionist, which w ill b e o ur b asis o f CS  a pproach. 
Unsupervised learning is a dynamic trademark of NI.  New 
learning c apability c omes f rom t wo concepts, (i ) 
engineering f iltering c oncept and ( ii) ph ysics-physiology 
isothermal equilibrium concept.   
Semantic Generalization: Semantic generalization i s 
slightly different than the subspace generalization, because 
it i nvolves a  higher l evel o f c ognition derived f rom bo th 
sides of the brain. Such an e-Brain and l-Brain combination 
processes t hinking within t wo boxes o f brain r elated by  a 
set of independent degrees of freedom. Thus, this semantic 
generalization is the different side of the same coin, in Sect 
4. We are ready to set up the math language leading to the 
modern unsupervised learning as follows:  



Natural Intelligence: the INNS Magazine                 8                             Volume1, Issue 2, Winter 2012 

 
2.2 Wiener Auto Regression  
Norbert Wiener i nvented the  near e quilibrium c ontrol as 
follows. He demonstrated a negative feedback loop for the 
missile trajectory g uidance. He  i ntroduced a m oving 
average Auto Regression (AR) with LMS error: 

𝑚𝑖𝑛.𝐸 =< (𝑢(𝑚) − 𝑦)2 > 

where t he s calar i nput 𝑢(𝑚) = 𝑤��⃗ 𝑚
𝑇𝑥⃗𝑚 ≡<  𝑥⃗𝑚 >  has 

weighted average of the past m data vector 

𝑥⃗𝑚 = (𝑥𝑡 , 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−(𝑚−1))𝑇 

to predict the future as a desired output 𝑦 = 𝑥𝑚+1.   
A simple near e quilibrium a nalytical f ilter s olution i s 

derived at the fixed point dynamics 
𝜕𝐸
𝜕𝑤��⃗

= 2 < (𝑤��⃗ 𝑇𝑥⃗𝑚 − 𝑥𝑚+1)𝑥⃗𝑚 >= 0,  e .g.  m=3 

�
𝑐𝑜 𝑐1 𝑐2
𝑐1 𝑐𝑜 𝑐1
𝑐2 𝑐1 𝑐𝑜

� �
𝑤1
𝑤2
𝑤3
� = �

𝑐1
𝑐2
𝑐3
�; 

 𝑐𝑡−𝑡′ ≡< 𝑥𝑡𝑥𝑡′ >; 𝑐1 =< 𝑥𝑡𝑥𝑡−1 >; 𝑐2 =< 𝑥𝑡𝑥𝑡−2 >; . .. 

Solving the T eoplitz matrix, W iener d erived the filter 
weights.  Auto Regression (AR) was extended by Kalman 
for a vector time series with nonlinear Riccati equations for 
extended Kalman filtering.  In i mage p rocessing:  𝑋⃗ =
[𝐴]𝑆 + 𝑁� where additive noisy images become a vector  𝑋⃗ 
represented by a l exicographic row-by-row order over 2-D 
space 𝑥⃗ . Wiener i mage f ilter i s d erived u sing AR f ixed 
point (f.p.) algorithm in the  Fourier transform domain: 

𝑋�(𝑘�⃗ ) = ∬𝑑2𝑥⃗ exp�𝑗𝑘�⃗ ∙ 𝑥⃗� 𝑋⃗(𝑥⃗);𝑗 = √−1 

Using F ourier d e-convolution t heorem, exp�𝑗𝑘�⃗ ∙ 𝑥⃗� =
𝑒𝑥𝑝�𝑗𝑘�⃗ ∙ (𝑥⃗ − 𝑦⃗�)exp (𝑗𝑘�⃗ ∙ 𝑦⃗) , gives a  l inear i mage 
equation i n t he p roduct f orm i n F ourier domain, as nois y 
speech de-mixing in Fourier domain: 

𝑋� = 𝐴̂𝑆̂ + 𝑁� 

Wiener sought 𝑆̂ = 𝑊�𝑋� to minimize the LMS errors  

 𝐸 =< �𝑊�𝑋� − 𝑆̂′�∗ ∙ �𝑊� 𝑋� − 𝑆′�� >; 

∵ 𝑓.𝑝.  
𝜕𝐸
𝜕𝑤�∗

=< 2𝑋�∗ ∙ �𝑊�𝑋� − 𝑆̂′� > = 0; 

Interesting is the termination: 𝑑𝑎𝑡𝑎���������⃗ ⊥ 𝑒𝑟𝑟𝑜𝑟�����������⃗ → 0: 𝑆̂′ → 𝑆̂ 

∴ 𝑊� =< 𝑋�∗ ∙ 𝑆′� > [< 𝑋�∗ ∙ 𝑋� >]−1 ≅ 𝐴̂−1[1 + 𝜀]−1, 

where noise to signal ratio is 𝜀 ≡< 𝑁�∗𝑁� >/�𝐴̂|2�𝑆̂|2. 
Wiener f iltering i s t he i nverse filtering 𝑊� = 𝐴̂−1  at 

strong s ignals, a nd becomes Va nder L ugt f iltering 𝑊� =

𝐴̂∗  �𝑆̂�2

<|𝑁�|2>
 for weak signals. A mini-max filtering is given by 

Szu (Appl. Opt. V. 24, pp.1426-1431, 1985). 
Such a  near e quilibrium a djustment i nfluenced 

generations of scientists. While F. Rosenblatt of Cornell U. 
pioneered the ‘perceptron’ concept for OCR, B. Widrow of 

Stanford took a leap of  faith forward with ‘multiple layers 
perceptrons.’  Hyvarinen & Oja developed t he Fast I CA 
algorithm.  The author was fortunate to learn from Widrow; 
co-taught with h im a  s hort UCLA course on  ANN, a nd 
continued t eaching for a  d ecade a fter 1988 (thanks to W. 
Goodin).   

 
2.3 ANN generalize AR 
Pedagogically s peaking, ANN generalizes W iener’s AR 
approach with 4 none-principles: (i) non-linear threshold, (ii) 
non-local m emory, (iii) non-stationary dyn amics and (iv) 
non-supervision learning, respectively Equations (4a,b,c,d).  

2.3.1 Non-linear Threshold: Neuron model   
McCullouch & Pitts proposed in 1959 a sigmoid model of 
threshold logic: mapping of neuronal input 𝑢𝑖(−∞, ∞) to 
the unary output 𝑣𝑖[0, 1] asymptotically by solving Ricati 
nonlinear  𝑑𝑣𝑖

𝑑𝑢𝑖
= 𝑣𝑖(1 − 𝑣𝑖) = 0, at ‘no or yes’ limits 

𝑣𝑖 = 0; 𝑣𝑖 = 1.  Exact solution is: 

         𝑣𝑖 = 𝜎(𝑢𝑖) ≡ [1 + exp(−𝑢𝑖)]−1     
= exp (𝑢𝑖

2
)[exp �𝑢𝑖

2
� + exp �−𝑢𝑖

2
�]−1,     (4a). 

Three interdisciplinary interpretations are given: 

Thermodynamics, this is a two s tate equilibrium solution 
expressed in f iring or  not, the ca nonical e nsemble of the 
brain at the equilibrium temperature T, and the Boltzmann’s 
constant 𝐾𝐵, as well as an arbitrary threshold 𝜃:  

𝑦 = 𝜎𝑇(𝑥 − 𝜃) = �1 + exp �−
𝑥 − 𝜃
𝐾𝐵𝑇

��
−1

. 

Neurophysiology, t his model can c ontribute t o the binary 
limit of a low temperature and high threshold value a single 
grandmother neuron firing i n a family t ree s ubspace 
(1,0,0,0,0..) as a sparse network representation.   

Computer Science, an overall cooling limit, 𝐾𝐵𝑇 ⟹ 0, the 
sigmoid logic i s reduced t o the binary l ogic us ed by John 
von Neumann for the digital computer: 1 ≧ 𝜎𝑜(𝑥 ≥ 𝜃) ≧ 0. 

2.3.2 Nonlocal memory: D. Hebb learning rule of t he 
communication is efficiently proportional t o what go es in  
and what comes out the channel by 𝑊𝑖,𝑗 ∝ 𝑣𝑖 𝑢𝑗 measuring 
the weight matrix of inter-neuron synaptic gap junction. A 
weight summation o f 𝑥⃗𝑖  given b y Compressive Sensing 
rise to a potential sparse input 𝑢�⃗ 𝑖 = �𝑊𝑖,𝛼�𝑥⃗𝛼  Eq(4b). 

2.3.3 Non-stationary dynamics is insured by Laponov 

control theory: 
𝑑𝑢𝑖
𝑑𝑡

= − 𝜕𝐸
𝜕𝑣𝑖

.      Eq(4c) 

2.3.4  Non-supervised learning is based on nonconvex 
energy landscape: 𝐸 ≅ 𝐻(𝑜𝑝𝑒𝑛/𝑛𝑜 𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟𝑠)  Eq(4d) 

2.4 Energy Landscape Supervised Algorithm  

Physicist J ohn Ho pfield broadened t he near-equilibrium 
Wiener notion a nd introduced a non-convex energy 
landscape E(𝑣𝑖) at the output 𝑣𝑖 space to accommodate the 
(neurophysiologic) a ssociative m emory s torage.  He 
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introduced N ewtonian d ynamics 𝑑𝑢𝑖/𝑑𝑡 = −𝜕𝐸/𝜕𝑣𝑖  as a 
generalization of the fixed point LMS Wiener dynamics. He 
proved a simple Lyapunov style convergence insured by a  
square of any real function which is always positive: 

𝑑𝐸
𝑑𝑡

= ∑ 𝜕𝐸
𝜕𝑣𝑖

𝑑𝑣𝑖
𝑑𝑢𝑖

𝑑𝑢𝑖
𝑑𝑡𝑖 = −𝜎′(𝜕𝐸

𝜕𝑣𝑖
)2 , Q.E.D. 

independent of energy l andscapes, as l ong as  a  real 
monotonic p ositive l ogic 𝑑𝑣𝑖/𝑑𝑢𝑖 ≡ 𝜎′ ≥ 𝑜 ,  in t erms 
of (in, out) = (𝑢𝑖 , 𝑣𝑖) defined by  

𝑣𝑖 = 𝜎(𝑢𝑖); & 𝑢𝑖 = ∑ 𝑊𝑖,𝑗𝑣𝑗𝑗 ;𝐸 = −1
2
∑ 𝑊𝑖,𝑗𝑣𝑖𝑣𝑗𝑖,𝑗 . 

Physicist E. R. Caianiello is considered a  t hinking 
machine b eyond W iener’s AR. H e u sed c ausality physics 
principles t o generalize the i nstantaneous M cCullough & 
Pitts neuron model building in the replenishing time delay 
in 1961. 

Psychologist James Anderson, in 1968, developed a  
correlation memory while Christopher von der Malsburg, 
1976, developed a self-organization c oncept. They 
described a  brain in a b ox concept, inspired by the binary 
number predictor box built by K. Steinbuch & E. Schmidt 
and based on  a learning mat rix as t he be ginning o f 
Associative M emory (AM) s torage in biocybernetics i n 
Avionics 1967. Kaoru Nakano, 1972, and Karl Pribram, 
1974, enhanced t his distributive A M c oncept w ith a  f ault 
tolerance (FT) for a partial pattern completion (inspired by 
Gabor hologram). 

Engineer Bernard Widrow took m ultiple layers 
perceptrons a s a daptive learning neural ne tworks. F or 
computing reasons, the middle layer neurons took the cool 
limit 𝑇 → 0 of the s igmoid threshold as non-differentiable 
bipolar logic, and achieved a limited adaptation.  
From t he c onnectionist vi ewpoints, Shun-ichi Amari 
indicated in 19 80 that t he binary l ogic a pproach m ight 
suffer a  premature l ocking in t he c orners o f hy per-cubes 
topology.  

2.5. Backprop Algorithm 
It t ook a  t eam o f s cientists known a s the Cambridge PDP 
group ( Neuropsychologists D avid R umelhart, J ames 
McClelland, G eoffrey H inton, R. J. W illiams, Michael 
Jordan, T errence S ejnowski, Francis Cr ick, a nd g raduate 
students) to determine t he ba ckprop a lgorithm. T hey 
improved W iener’s LMS e rror 𝐸 = ∑ |𝑣𝑖 −  𝑣𝑖∗|2𝑖  with a  
parallel di stributed p rocessing (PDP) double decker 
hamburger architecture, consisting of 2 layers o f b eef 
(uplink 𝑤𝑘,𝑗& d ownlink 𝑤′

𝑗,𝑖 ) s andwiched between in 3  
layers o f buns made o f ne urons. The s igmoid l ogic: 𝜎′ ≡
𝑑𝜎/𝑑𝑢𝑘 < ∞ is analytic, they unlocked the bipolar ‘bang-
bang’ control from Widrow’s corners of  hypercubes. They 
have analytically d erived the ‘Backprop’ algorithm.  
Namely, passing boss error to that of the hidden layer; and, 
in turns, to the bottom layer which has exemplar inputs.   

𝜕𝑤𝑗,𝑖

𝜕𝑡
≅ ∆𝑤𝑗,𝑖

∆𝑡
= − 𝜕𝐸

𝜕𝑤𝑗,𝑖
  (5a) 

The Hebb learning rule of uplink weight is obtained by the 
chain rule: 

    ∆𝑤𝑘,𝑗 = − 𝜕𝐸
𝜕𝑤𝑘,𝑗

∆𝑡 ≅ −∑ 𝜕𝐸
𝜕𝑢𝑛

𝜕𝑢𝑛
𝜕𝑢𝑘𝑛

𝜕𝑢𝑘
𝜕𝑤𝑘,𝑗

∆𝑡     

= ∑ 𝛿𝑛𝛿𝑛,𝑘𝑣′𝑗∆𝑡 =𝑛 𝛿𝑘𝑣′𝑗∆𝑡,       (5b) 

Kronecker 𝛿𝑛,𝑘 ≡
𝜕𝑢𝑛
𝜕𝑢𝑘

 selects t op l ayer post-synaptic 𝛿𝑗 
(error energy slope) and hidden layer pre-synaptic 𝑣′𝑖: 

𝛿𝑘 ≡ − 𝜕𝐸
𝜕𝑢𝑘

= − 𝜕𝐸
𝜕𝑣𝑘

𝜕𝑣𝑘
𝜕𝑢𝑘

= −(𝑣𝑘 −  𝑣𝑘∗)𝜎(′).  (5c) 

The s igmoid s lope 𝜎(′)  is a nother Gaussian-like window 
function.  The P DP gr oup assumed H ebb’s r ule ∆𝑤𝑘,𝑗 ≈
𝛿𝑘𝑣′𝑗  holds t rue universally, and cl everly computed the 
hidden share of blaming 𝛿′𝑗 from fan-in boss errors 𝛿𝑘 

𝛿′𝑗 ≡ − 𝜕𝐸
𝜕𝑢′𝑗

= −∑ 𝜕𝐸
𝜕𝑢𝑘

𝜕𝑢𝑘
𝜕𝑣′𝑗𝑘

𝜕𝑣′𝑗
𝜕𝑢′𝑗

≡  ∑ 𝛿𝑘𝑘 𝑤𝑘,𝑗𝜎(′). (5d) 

Each layer’s I /O firing r ates are d enoted in the a lphabetic 
order as (input, output) = (u,v) respectively; the top, hidden, 
and bottom layers are labeled accordingly:  

(𝑣𝑘,𝑢𝑘) ← 𝑤𝑘,𝑗 ← �𝑣′𝑗 ,𝑢′𝑗� ← 𝑤′
𝑗,𝑖 ← (𝑣"𝑖 ,𝑢"𝑖), 

where 𝑣𝑘 = 𝜎�𝑢𝑘) ≡ 𝜎(∑ 𝑤𝑘,𝑗𝑗 𝑣′𝑗�;  𝑣′𝑗 = 𝜎(𝑢′𝑗 ≡ ∑ 𝑤′𝑗,𝑖𝑖 𝑣′′𝑖). 
Hebbian rule t urns o ut t o b e s imilar a t e very l ayers, e .g., 
𝛿′′𝑗 ≡ − 𝜕𝐸

𝜕𝑢′′𝑗
=  ∑ 𝛿′𝑘𝑘 𝑤′𝑘,𝑗𝜎(′),  etc. Such a s elf-similar 

chain relationship is known as backprop. 

2.6 Bio-control 
Independently, P aul Werbos t ook a  different viewpoint, 
assigning both the adaptive credit and the adaptive blame to 
the p erformance m etric at d ifferent l ocations of the 
feedback l oops i n r eal world financial-like applications 
(IEEE H andbook L earning & App rox. Dyn. P rog., 2004).  
As i f t his were a  ‘carrot a nd s tick’ model controlling a  
donkey, t o be e ffective, t hese f eedback c ontrols m ust be  
applied at different parts of the donkey.  Thus, this kind of 
bio-control g oes beyond the ne ar-equilibrium ne gative 
feedback control. Such broad sense reinforcement learning, 
e.g. s ought af ter a cl ear r eception of a smartphone by 
moving around without exemplars, began a flourishing era, 
notably, Andrew Barto, Jennie Si, George L endaries, 
Kumpati Narendra, et al. p roduced heuristic dynamic 
programming, stochastic, c haos, m ulti-plants, m ulti-scales, 
etc., bio-control theories. 

2.7 Self-Organization Map (SOM)  
Teuvo Kohonen computed the batched centroid update rule 
sequentially: 

 < 𝑥⃗ >𝑁+1=< 𝑥⃗ >𝑁 �
𝑁+1−1
𝑁+1

� + 1
𝑁+1

𝑥⃗𝑁+1        

    =< 𝑥⃗ >𝑁+ 𝜌(𝑥⃗𝑁+1−< 𝑥⃗ >𝑁),       (6) 

replacing the uniform update weight with adaptive learning 
𝜌 = 1

𝑁+1
< 1. SOM has significantly contributed to database 
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applications with annual world-wide meetings, e.g. US PTO 
Patent s earch, discovery of hi dden l inkage a mong 
companies, genome coding, etc. 

2.8 NP Complete Problems 
David T ank a nd John Hopfield (T -H) s olved a  cl ass of 
computationally i ntractable problems ( classified a s t he 
nondeterministic p olynomial ( NP), e .g. the Travelling 
Salesman Problem, Job scheduling, etc.) The possible tours 
are co mbinatorial ex plosive i n the f actorial sense: 𝑁!/2𝑁, 
where the denominator i s due to the TSP having no home 
base, and the clockwise and counter-clockwise tours having 
an e qual distance. T -H s olved t his by using the p owerful 
MPD c omputing capability of A NN (Cybernetics, &  Sci. 
Am. Mag).   

𝐸 = ∑ ∑ 𝑣𝑐 �𝑊𝑐,𝑡�𝑣𝑡 +𝑁
𝑡=1

𝑁
𝑐=1  Constraints. 

Their c ontribution i s similar to DNA computing for 
cryptology RSA de -coding. Both de serve the honor o f 
Turing P rizes. U nfortunately, the T -H constraints of t he 
permutation matrix �W𝑐,𝑡� are not readily translatable to all 
the other classes of the NP complete problems: 

�𝑊𝑐,𝑡� = �
1 0 0
0 1 0
0 0 1

� , 

(city # 1 visits t our N o.1; # 2 f or 2 nd , # 3 for 3 rd etc., a nd 
returned to No. 1; T-H labeled each neuron with 2-D vector 
index f or c onvenience in b oth c ity &  t our i ndices. 
Meanwhile, Y. Takefuji & others mapped the TSP to many 
other a pplications i ncluding genome sequencing ( Science 
Mag.). 
 
Divide & Conquer (D&C) Theorem: Szu & Foo solved a 
quadratic N P c omplete c omputing by D&C, us ing 
orthogonal decompositions 𝐴 = 𝐵�⃗ + 𝐶 , 𝑙2-norm: 

 𝑚𝑖𝑛. |𝐴|22 = 𝑚𝑖𝑛. |𝐵�⃗ |22 + 𝑚𝑖𝑛. |𝐶|22;  𝑖𝑓𝑓 𝐵�⃗ ∙ 𝐶 = 0.     (7) 

Unfortunately, searching boundary tours for divisions could 
be t ime consuming. Moreover, Simon Foo and I  could not 
solve the TSP based on the original constraints of row-sum 
and column-sum and row products and column products of 
the m atrix, g enerating a M exican s tandoff dual like i n 
Hollywood western movies.   
 
Improved TSP with D&C Algorithm:  A  necessary and 
sufficient c onstraint turns out  to be  sparse orthogonal 
sampling Matrix [Φs] which is equivalent to a permutation 
mix up of the identity matrix.  Iff each row and column is 
added up to one, s imilar t o N  queens constraint ( in c hess, 
queens can kill each other, unless only one queen occupies 
one row a nd c olumn).  Furthermore, a  large s cale 
democratic “Go game,” is defined by a unlimited number of 
rank-identical bl ack or  w hite stones f or two competing 
groups roaming over the same no-man l and, square l attice 
space.  To win the territory is forming a cowboy lasso loop 
fashion surrounding the other c olor s tones territory w ith 
one’s own c olor s tones; b ut one  stone i s p ut d own a t t he 

intersection of t he e mpty l attice a t o ne s tep a t o ne t ime, 
including any of the same color stones putting down early 
by f oresights. T hus, t he winning g oal i s t o gain t he 
maximum possible territory o n t he s quare common l attice 
board (a simplified form has been solved by ANN by Don 
Wunsch e t a l.). T he strategy to  w in is  usually pu t down 
one’s own color stone in the center of the board about a half 
size, and this is the basis of our divide and conquer theorem. 
We create a surrogate or ghost city at the mid point  𝑋⃗.   

  
Without the need of a boundary search among cities, adding 
a ghost city 𝑋⃗ finds two neighborhood cities 𝑌�⃗  and 𝑍 with 
two vector distances: 𝐵�⃗ = 𝑌�⃗ − 𝑋⃗, 𝐶 = 𝑋⃗ − 𝑍. If f 𝐵�⃗ ∗ 𝐶 =
0  satisfies t he D&C t heorem, w e acce pt 𝑋⃗ . T hen we 
conceptually solve t wo s eparate T SP p roblems i n pa rallel. 
Afterwards, we can  remove the ghost c ity and modify the  
tour sequences indicated b y dotted l ines. According to the 
triangle i nequality, |𝑎⃗| + |𝑏�⃗ | ≥ |𝑐|, t he v ector 𝑐 represents 
a d otted l ine having a  s horter t our p ath dis tance th an the  
original tour involving the ghost city. Q.E.D.   

This strategy should be  executed f rom the s mallest 
doable regions to bigger ones; each time one can reduce the 
computational complexity by half.  In other words, solving 
the t otal N =18 c ities by two halves N/2=9; on e c ontinues 
the procedure w ithout s topping s olving t hem, f urther 
dividing 9 by 4 and 5 halves, until one can carry out TSP in 
smaller units 4 and 5, each has de-ghosted afterward.  Then, 
we go to 9 and 9 cities, de-ghost in a reverse order. 

2.9 ART  
Gail Ca rpenter and S tephen Grossberg implemented t he 
biological vigilance c oncept i n terms o f two l ayers of 
analog ne urons architecture. T hey pr oved a  convergence 
theorem about short and long term traces 𝑍𝑖,𝑗 in 1987 App. 
Op.  Their two layer architecture could be thought of as if 
the t hird l ayer s tructure were f lipping d own t o t ouch t he 
bottom layer using two phone lines to speak to one another 
top-down or  bot tom up di fferently. Be sides t he PDP 3 
layers buns s andwiched 2 layers of  weights have the 
original number of degrees of freedom, they created a new 
degree of f reedom cal led t he vigilance defined by  𝜌 =
(𝚤𝑛���⃗ 𝑡+1, < 𝑤��⃗ 𝑡 >) = 𝑐𝑜𝑠(≤ 𝜋/4) ≥ 0.7.  This parameter can 
either accept the newcomer and updating the leader’s class 
Centroid with the newcomer vector; or rejecting the 
newcomer letting i t be a  n ew leader creating a n ew c lass.  
Without the need of  supervision, they implemented a s elf-
organizing a nd robust M PD c omputing who f ollows t he 
leader called (respectively binary, o r an alog, o r fuzzy) the 
adaptive r esonance theory ( ART I, II, II I).   ART y ields 
many applications by B oston NSF C enter o f L earning 
Excellence.  Notably, M. Cader, et . al. at the World Bank 

𝑋⃗ 

𝑌�⃗  𝑍 
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implemented A RT expert s ystems for typin g seeds c hoice 
for s aving t he c ostly di agnosis ne eds by m eans of PCR 
amplification in or der to bui ld up  enough DNA samples 
(pico grams); a decision prediction system based on the past 
Federal R eserve open f orum r eports ( Neural Network 
Financial Expert S ystems, G. J . Deboeck a nd M . C ader, 
Wiley 1994). 

2.10 Fuzzy Membership Function  
Lotfi Zadeh introduced an open set for imprecise linguistic 
concept represented b y a ‘ possibilities membership 
function’, e .g. beauty, young, e tc. This open set t riangular 
shape function is not the probability measure which must be 
normalized t o t he unity.  Nevertheless, a n intersection o f 
two fuzzy sets, e.g. young and beautiful, becomes sharper in 
the joint concept. Such an electronic computing system for 
the union and the intersection of these triangle membership 
functions is useful, and has b een implemented by  Takeshi 
Yamakawa in t he fuzzy l ogic ch ips. Whenever a precise 
engineering tool meets an  imprecise application, the fuzzy 
logic chip may be useful, e.g. automobile transmission box 
and household c omfort c ontrol device. Such a  fuzzy l ogic 
technology becomes exceedingly useful as documented in a 
decade of s oft c omputing c onferences s ponsored b y The 
Japan Fuzzy Logic Industry Association.   
ANN Modeling of Fuzzy Memberships: Monotonic 
sigmoid logic i s c rucial f or John Hopfield’s convergence 
proof.  If t he neuron had a piecewise negative response in 
the shape of a scripted N-letter:  𝑣𝑖 = 𝜎𝑁(𝑢𝑖), then, like the 
logistic map, it has a single hump height adjustable by the 
𝜆 -knot (by M.  Feigenbaum f or the tuning of  period 
doubling bi furcation c ascade). If w e r epresent eac h pixels 
by the sick neuron model 𝑣𝑖 = 𝜎𝑁(𝑢𝑖), then recursively we 
produce t he n onlinear B aker t ransform of  image m ixing.  
Such a  C haotic N N i s useful f or the modeling of  dr ug-
induced hallucinating images, olfactory ball smell dynamics 
of Walter Freeman, and learnable fuzzy membership 
functions of Lotfi Zadeh. 

2.11 Fast Simulated Annealing  
Szu an d Hartley h ave published in Phys L ett. and I EEE 
Proc. 1986, the Fast Simulated Annealing (FSA) approach. 
It combines t he i ncreasing n umbers of l ocal Gaussian 
random walks at a high temperature T, with an unbounded 
Levy f lights at a low temperature in the combined Cauchy 
probability density of noise.  A speed up cooling schedule 
is proved to b e inversely linear time step 𝑇𝐶 = 𝑇𝑜

1+𝑡
, for any 

initial t emperature 𝑇𝑜  that g uarantees the r eaching o f the 
equilibrium ground state at the minimum energy.  Given a 
sufficient low temperature 𝑇𝑜�  Geman and Geman proved in 
1984 th e c onverging to  t he minimum e nergy gr ound s tate 
by a n inversely l ogarithmic t ime s tep: 𝑇𝐺 = 𝑇�𝑜

1+𝑙𝑜𝑔(1+𝑡)
.  

Sejnowski & Hinton used the Gaussian random walks in the 
Boltzmann’s m achine for a  s imulated a nnealing l earning 
algorithm e mulating a  b aby l earning t he t alk, c alled Net-
talk, or Boltzmann Machine. 

Cauchy Machine:  Y. Takefuj & Szu designed a n 
electronic i mplementation o f such a s et o f s tochastic 
Langevin e quations.  S tochastic ne urons a re c oupled 
through t he s ynapse AM l earning rule a nd recursively 
driven by Levy flights and Brown motions governed by the 
Cauchy pdf.  The set of Cauchy-Langevin dynamics enjoys 
the f aster i nversely l inear cooling s chedule to r each the 
equilibrium state.   
Do 10 t’=t’+1; 𝑇𝐶(𝑡′) = 𝑇(𝑡′)

1+𝑡′
 

 ∆𝑥 = Tc(t′) tan[(2θ[0,1] − 1)  π/2]; 
x(t’)=𝑥𝑡′+∆𝑥; 𝐸(𝑡′) = ∑ 1

2
𝑘(𝑥(𝑡′) − 𝑥𝑖)2𝑚

𝑖=1 ; 
 ∆𝐸 = 𝐸(𝑡′) − 𝐸(𝑡′ − 1);  

If ∆𝐸 ≤ 0; accept x(t’), Go To 10; or 
compute Metropolitan exp(-∆𝐸/𝐾𝐵𝑇𝐶(𝑡′)) > 𝜀𝑜;  
accept x(t’) or not. 

10:  Return. 
 
Optical version of a Cauchy machine is done by Kim Scheff 
and Joseph Landa. The Cauchy noise is optically generated 
by the random reflection of the mirror displacement x of the 
optical r ay f rom a  uni formly r andom spinning m irror 
angle 𝜃(− 𝜋

2
, 𝜋

2
). The temperature T is the distance parameter 

between t he mirror a nd t he pl ate ge nerates t he C auchy 
probability d ensity f unction ( pdf) ( Kac s aid as  a F rench 
counter e xample t o t he B ritish G auss C entral L imiting 
Theorem). This pdf is much faster for search than Gaussian 
random walks:  

 𝜌𝐺(Δ𝑥) = 1

√2𝜋
exp �−Δ𝑥

𝑇

2
� ≅ 1

√2𝜋
(1 − Δ𝑥

𝑇

2
+. . ).   

  𝜌𝐶(Δ𝑥) = 1
𝜋

(1 + Δ𝑥
𝑇

2
)−1 = 1

𝜋
(1 − Δ𝑥

𝑇

2
+ ⋯ ).  

Proof: Since 𝒙 = 𝑇 𝑡𝑎𝑛𝜃; 𝑡ℎ𝑒𝑛  𝑑𝑥
𝑑𝜃

= 𝑇(1 + 𝑡𝑎𝑛𝜃2); 

𝜋 = �𝑑𝜃 = �
𝑑(𝑥𝑇)

1 + 𝑡𝑎𝑛𝜃2 ; 

1 = ∫𝜌𝑐(𝑥)𝑑𝑥 = 1
𝜋 ∫

1

1+�𝑥𝑇�
2 𝑑(𝑥

𝑇
) .  Q.E.D. 

Global Levy Flights < Δ𝑥2 >ρC= ∞ 
Local Brownian motion < Δ𝑥2 >ρC≅ 𝑇(𝑡) 
 
2.12 NI Expert System  
Szu and John Caulfield published an optical expert system 
in 1987, generalized the AI  Lisp programming the pointer 
linkage m ap from 1-D v ector arrays o f 
𝑓 = ( 𝐴, 𝑂,𝑉)𝑇 to  𝑓′ = ( 𝐴′, 𝑂′, 𝑉′)𝑇 , et c. The co lor, “A  
attribute,” of apple, “O  o bject,” i s r ed, “ V value”.  We 
represent the Lisp m ap wi th the MPD [𝐻𝐴𝑀] = ∑𝑓 𝑓′𝑇 
storage which ha s demonstrated both t he F T a nd t he 
Generalization capabilities. This FT & SG of AM NI Expert 
System i s a   key d riving e ngine f or V ideo i mage Cl iff 
Notes. 

2.13 Unsupervised Learning of l-Brain 
In order to make sure nothing but the desired independent 
sources c oming out of t he f ilter, C . J utten a nd J . Herault 
adjusts the weights of inverse filtering to undo the unknown 
mixing by combining the inverse and forward operation as 
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the unity operator ( Snowbird IOP conf.; S ig. P roc. 1 991). 
Since J .-F. C ardoso h as systematically investigated t he 
blind de -convolution o f unknown i mpulse r esponse 
function; h e called a matrix f orm as  B linded Sources 
Separation ( BSS) b y non -Gaussian higher o rder s tatistics 
(HOS), or the information maximum output. His work since 
1989 did not generate the excitement as it should be in the 
ANN community. It was not until Antony J. Bell and Terry 
J. S ejnowski ( BS), e t a l. [10] ha ve systematically 
formulated an unsupervised learning of  A NN algorithm, 
solving both t he u nknown mixing w eight matrix a nd the 
unknown sources. Their solutions are subject to the 
constraints of m aximum f iltered e ntropy  𝐻(𝑦𝑖)  of the 
output  𝑦𝑖 = �𝑊𝑖,𝛼�𝑥𝛼 , where 𝑥𝑗 = �𝐴𝑗,𝛼? �𝑠𝛼? , and the 
repeated G reek i ndices r epresent t he s ummation.  A NN 
model uses a robust saturation of linear filtering in terms of 
a n onlinear s igmoid out put 
 𝑦𝑖 = 𝜎(𝑥𝑖) = {1 + exp�−�𝑊𝑖,𝛼�𝑥𝛼�}−1 .  S ince a s ingle 
neuron learning rule turns out to be isomorphic to that of N 
neurons i n t ensor notions, f or s implicity sake we d erive a  
single neuron learning rule to point out why the engineering 
filter does not f ollow the H ebb’s synaptic w eight updates.  
Again, a bona fide unsupervised learning does not need to 
prescribe t he desirable o utputs f or e xemplars i nputs.  F or 
ICA, B S c hose t o m aximize t he Shannon output e ntropy 
H(y) i ndicating t hat t he i nverse f iltering has b lindly de-
convoluted and found the unknown i ndependent s ources 
without knowing t he i mpulse r esponse f unction or m ixing 
matrix. Thus, the filter weight adjustment is defined in the 
following and the BS result is derived as follows:  

𝛿𝑤
𝛿𝑡

= 𝜕𝐻(𝑦)
𝜕𝑤

, &, 𝐻(𝑦) = −∫𝑓(𝑦) log𝑓(𝑦)𝑑𝑦 ⟹  

 𝛿𝑤 = 𝜕𝐻(𝑦)
𝜕𝑤

𝛿𝑡 = {|𝑤|−1 + (1 − 2𝑦)𝑥}𝛿𝑡.     (8a) 

Derivation: From the normalized probability definitions: 

                 ∫𝑓(𝑦)𝑑𝑦 = ∫𝑔(𝑥)𝑑𝑥 = 1 ; 𝑓(𝑦) = 𝑔(𝑥)

�𝑑𝑦
𝑑𝑥
�
;   

     𝐻(𝑦) ≡ −< log 𝑓(𝑦) >𝑓 , 

we e xpress the  ou tput pdf i n te rms of  th e inp ut pdf w ith 
changing J acobian variables. W e exchange the or ders of 
operation of t he ensemble a verage brackets a nd t he 
derivatives to compute  

𝜕𝐻(𝑦)
𝜕𝑤

=
𝜕<log�𝑑𝑦𝑑𝑥�>𝑓

𝜕𝑤
≅ | 𝑑𝑦

𝑑𝑥
|−1

𝜕�𝑑𝑦𝑑𝑥�

𝜕𝑤
;  

Ricati sigmoid: 𝑦 = [1 + exp(−𝑤𝑥)]−1; 
𝑑𝑦

𝑑(𝑤𝑥)
= 𝑦(1 − 𝑦);

𝑑𝑦
𝑑𝑥

= 𝑤𝑦(1 − 𝑦)&
𝑑𝑦
𝑑𝑤

= 𝑥𝑦(1 − 𝑦). 

Substituting these d ifferential results into the unsupervised 
learning rule yields the result.  Q.E.D. 

Note that the second term of Eq(8a) satisfies the Hebbian 
product rule between output y and input x, but the first term 
computing t he i nverse m atrix  |𝑤|−1  is n ot s calable w ith 
increasing N nodes. T his n on-Hebbian l earning en ters 
through t he l ogarithmic derivative of J acobian gi ving 

| 𝑑𝑦
𝑑𝑥

|−1. T o i mprove the c omputing s peed, S . Amari e t a l. 

assumed identity �𝛿𝑖,𝑘� = [𝑊𝑖,𝑗]�𝑊𝑗,𝑘�
−1

 and m ultiplied i t 
to the BS algorithm 

 𝑑𝐻
𝑑𝑊𝑖,𝑗

[𝛿𝑖,𝑘] = {�𝛿𝑖,𝑗� − (2𝑦⃗ − 1)𝑦⃗𝑇]}[𝑊𝑖,𝑗]−1,  
where use is made of 𝑦𝑖 = �𝑊𝑖,𝛼�𝑥𝛼 to change the input 𝑥𝑗to 
the s ynaptic g ap by  i ts w eighted output 𝑦𝑖. In  i nformation 
geometry, Amari et  al . derived the natural g radient ascend 
BSA algorithm: 

 𝑑𝐻
𝑑𝑊𝑖,𝑗

�𝑊𝑖,𝑗� = {�𝛿𝑖,𝑗� − (2𝑦⃗ − 1)𝑦⃗𝑇]},     (8b) 

which i s not in the di rection o f original 𝑑𝐻
𝑑𝑊𝑖,𝑗

 and enjoys a  
faster update without computing the BS inverse . 
 
Fast ICA: Erkki Oja began his ANN learning of nonlinear 
PCA for pattern recognition in his Ph D study 1982.  

< 𝑥�⃗𝑥�⃗𝑇 > 𝑒̂  = 𝜆𝑒̂; 

𝑤’ − 𝑤 = 𝑥⃗𝜎(𝑥⃗𝑇𝑤��⃗ ) ≅< 𝑥⃗𝑥⃗𝑇 > 𝑤��⃗ ;        (8c) 

 
𝑑𝑤��⃗
𝑑𝑡 =< 𝑥⃗𝑥⃗𝑇 > 𝑤��⃗ ≅ 𝜎(𝑥⃗𝑇𝑤��⃗ )𝑥⃗ ≅

𝑑𝐾(𝑢𝑖)
𝑑𝑢𝑖

d𝑢𝑖
d𝑤𝑖

≡ k(𝑥⃗𝑇𝑤��⃗ )𝑥⃗; 

where Oj a changed t he u nary l ogic t o bi polar hyperbolic 
tangent logic  𝑣𝑖 = 𝜎(𝑢𝑖) ≈ 𝑢𝑖 −

2
3
𝑢𝑖3  ≅ 𝑑𝐾(𝑢𝑖)

𝑑𝑢𝑖
;  𝑢𝑖 = 𝑤𝑖,𝛼𝑥𝛼 .  

It be comes similar t o a  K urtosis s lope, which suggested to 
Oja a new contrast f unction K. The following i s t he 
geometric b asis o f a s topping c riterion o f unsupervised 
learning. Taylor expansion of the normalization, Eq(8c) and 
set | 𝑤��⃗ |2 = 1:  

   |𝑤��⃗ ′|−1 = [(𝑤��⃗ + 𝜖𝑥��⃗ 𝑘(𝑤��⃗ 𝑇𝑥⃗))𝑇�𝑤��⃗ + 𝜖𝑥��⃗ 𝑘(𝑤��⃗ 𝑇𝑥⃗)�]−
1
2  

 
 

      =  1 − 𝜖
2

 𝑘(𝑤��⃗ 𝑇𝑥⃗)(𝑥⃗𝑇𝑤��⃗ + 𝑤��⃗ 𝑇𝑥⃗) + 𝑂(𝜖2). 

   𝑤��⃗ " ≡ 𝑤��⃗ ′|𝑤��⃗ ′|−1 
= �𝑤��⃗ + 𝜖𝑥��⃗ 𝑘(𝑤��⃗ 𝑇𝑥⃗)� �1 −

𝜖
2  𝑘(𝑤��⃗ 𝑇𝑥⃗)(𝑥⃗𝑇𝑤��⃗ + 𝑤��⃗ 𝑇𝑥⃗)� 

∆𝒘���⃗ "=w���⃗ " −𝑤��⃗ =  𝝐�𝜹𝜶,𝜷 − 𝒘"𝜶𝒘"𝑻𝜷�𝒙��⃗ 𝜶
𝑑𝐾�𝑢𝛽�
𝑑𝑤"�����⃗ 𝑖

      (8d) 

This ki nd of derivation is therefore referred t o a s BSAO 
unsupervised learning collectively Eqs(8b, 8d). 
 
Fast ICA Example:  A. Hyvarinen and Oja demonstrated 
Fast ICA in 1996, as the fixed point analytical solution of a 
cubic r oot: 𝑑𝐾(𝑢𝑖)

𝑑𝑤𝑖
= 0 , of  a  s pecific c ontrast function  

named Kurtosis.  Rather t han m aximizing an a rbitrary 
contrast fu nction, o r the BS filtered o utput e ntropy, t hey 
considered the 4th order cummulant Kurtosis 𝐾(𝑦𝑖) =< 𝑦𝑖4 >
−3 < 𝑦𝑖2 >2 which vanishes for a Gaussian average.  K >0 
for super-Gaussian, e.g. an image histogram that is broader 
than Gaussian, a nd K<0 f or s ub-Gaussian, e. g. a  s peech 
amplitude L aplacian histogram t hat i s narrower t han 
Gaussian.  Every f aces a nd voi ces ha ve different f ixed 
value o f Kurtosis t o s et t hem a part.  At t he bottom of  a 
fixed p oint, t hey s et t he s lope of K urtosis t o z ero a nd 
efficiently and analytically solved its c ubic r oots. T his i s 
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called (Fast) I CA, a s c oined by  P eter C omo (S ig. P roc., 
circa ‘90).  
 

𝜃 → 𝜑 
 

𝑥⃗𝑖 = 𝑎⃗(𝜃𝑖)𝛼𝑠𝛼 = 𝑐𝑜𝑠𝜃𝑖𝑠1 + sin𝜃𝑖𝑠2; 𝑖 = 1,2 

𝑢�⃗ 𝑗 = 𝑘�⃗ 𝑇�𝜑𝑗�𝛼𝑥⃗𝛼 = 𝑐𝑜𝑠𝜑𝑗𝑥1 + 𝑠𝑖𝑛𝜑𝑗𝑥2; 𝑗 = 1,2 

�
𝑢1
𝑢2� = �cos𝜑1 − sin𝜑1

sin𝜑2 cos𝜑2
� � cos𝜃1 sin𝜃2
−sin 𝜃1 cos 𝜃2

� �
𝑠1
𝑠2� 

= �
cos (𝜑1 − 𝜃1) sin (𝜑1 − 𝜃2)
sin (𝜑2 − 𝜃1) cos (𝜑2 − 𝜃2)� �

𝑠1
𝑠2�’ 

Oja’s rule of independent sources x & y: 

𝐾(𝑎𝑥 + 𝑏𝑦) = 𝑎4𝐾(𝑥) + 𝑏4𝐾(𝑦) 

𝐾(𝑢1) = cos (𝜑1 − 𝜃1)4𝐾(𝑠1) + sin(𝜑1 − 𝜃2)4 𝐾(𝑠2) 

𝐾(𝑢2) = sin (𝜑2 − 𝜃1)4𝐾(𝑠1) + cos (𝜑2 − 𝜃2)4𝐾(𝑠2) 

Szu’s ru le: Iff 𝜑𝑗 = 𝜃𝑖 ± 𝜋
2

; then 𝐾(𝑢1) = 𝐾(𝑠2);𝐾(𝑢2) =

𝐾(𝑠1), verifing Fast ICA 𝜕𝐾
𝜕𝑘𝑗

= 0. Given arbitrary unknown 
𝜃𝑖 , not ne cessarily or thogonal t o e ach other, the k illing 
weight 𝑘�⃗ �𝜑𝑗� can eliminate a mixing vector 𝑎⃗𝑖(𝜃𝑖).  
 
2.14  Sparse ICA  

New application is applying a sparse constraint of 
non-negative matrix f actorization ( NMF), which i s useful 
for image learning of parts: eyes, noses, mouths, (D. D. Lee 
and H . S . Seung, N ature 401(6755):788–791, 19 99); 
following a s parse n eural co de f or n atural i mages ( B. A. 
Olshausen and D. J. Field, Nature, 381:607–609, 1996).  P. 
Hoyer provided M atlab c ode t o run sparse N MF [𝑋] =
[𝐴][𝑆] , (2004). 𝑚𝑖𝑛. |[𝐴]|1;𝑚𝑖𝑛. |[𝑆]|1  subject to 𝐸 =
|[𝑋] − [𝐴][𝑆]|22.  The projection op erator i s derived f rom 
the Grand-Schmidt decomposition  𝐵�⃗ = 𝐵�⃗ ⊥ + 𝐵�⃗ ∥ ; where 
𝐵�⃗ ∥ ≡ (𝐵�⃗ ⋆ 𝐴)𝐴/|𝐴|2 , and 𝐵�⃗ ⊥ ≡ 𝐵�⃗ −  𝐵�⃗ ∥ .   Alternative 
gradient de scend solutions be tween 2 u nknown matrices 
{[𝐴]𝑜𝑟 [𝑆]} : n ew [𝑍]′ = [𝑍] − 𝜕𝐸(|[𝑋]−[𝐴][𝑆]|2)

𝜕[𝑍]
= 𝑜; 

𝑚𝑖𝑛. |[𝑍]|1, where a lternatively s ubstituting 
[𝑍] 𝑤𝑖𝑡ℎ [𝐴] 𝑜𝑟 [𝑆]}.  (Q. Du, I . Kopriva & H. Szu, “ICA 
hyperspectral r emotes s ensing,” O pt E ng.V45, 
2006;“Constrained Matrix Factorization for Hyperspectral,” 
IEEE IGARS 2005).  Recently, T-W. Lee and Soo-Young 
Lee, et al. at KAIST have solved the source permutation  
challenge of ICA speech sources in the Fourier domain by 
de-mixing for Officemate automation. They grouped similar  
Fourier components i nto a l inear c ombination i n a  vector 
unit, and reduced the number of independent vectors in the 
sense of sparse measurements solving the vector dependent 
component analysis (DCA) [11].  
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Figure 1: (a) De-mixing by killing vector(Yamakawa & Szu); 
(b) a sources image (Szu) (not shown Ymakawa) de-mixed by 
one of the killing vectors; (c)(left) The vertical axis indicates 
the blue source of Szu face vector, the green source of 
Yamakawa face vector, and the red is the Kurtosis value 
plotted against the killing weight vector.  (d) (right) The 
Kurtosis is plotted against the source angle, where the max of 
Kurtosis happens at two source angles (Ref: H. Szu, C. Hsu, T. 
Yamakawa, SPIE V.3391, 1998; “Adv. NN for Visual image 
Com,” Int’l Conf Soft Computing, Iizuka, Japan, Oct. 1, 1998). 
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2.14 Effortless Learning Equilibrium Algorithm  
An effortless thought process that emulates how the e-Brain 
intuitive i dea process w orks. Such a n e ffortless t hinking 
may possibly reproduce an intuitive solution, which belong 
to the local isothermal equilibrium a t b rain’s temperature 
 𝐾𝐵𝑇𝑜  ( 𝐾𝐵  is Bo ltzmann c onstant, 𝑇𝑜 = 273 + 37𝑜𝐶 =
310𝑜 Kelvin). Therefore, the thermodynamic physics gives 
an inverse s olution t hat must s atisfy t he m inimum 
Helmholtz f ree en ergy: 𝑚𝑖𝑛.Ε(𝑠𝑖) =  𝐸 –𝑇𝑜 𝑆.  The 
unknown i nternal b rain e nergy i s consistently d etermined 
by the Lagrange multiplier methodology. Thus, we call our 
m-component ‘min-energy max a-priori source entropy’ as 
Lagrange C onstraint Neural Ne twork (LCNN) i n 1 997.  
Taylor e xpansion of t he i nternal e nergy i ntroduced 
Lagrange parameter 𝜇 as variable energy slope. 

𝐸 = 𝐸𝑜∗ + �
𝜕𝐸
𝜕𝑠𝑖

𝑚

𝑖=1

(𝑠𝑖 − 𝑠𝑖∗) + 𝑂(∆2) = 𝐸𝑜∗ + 𝜇⃗ ∙ �[𝑊]𝑋⃗ − 𝑆∗� + 𝑂(∆2) 

The L agrange slope v ariable 𝜇  were p arallel and 
proportional to the error itself  𝜇⃗ ≈ �[𝑊]𝑋⃗ − 𝑆�, our LCNN 
is reduced to W iener LMS s upervised learning 𝐸 ≅ 𝐸𝑜∗ +
|[𝑊]𝑋⃗ − 𝑆∗|2  of t he e xpected o utput 𝑆∗  from t he act ual 
output  [𝑊]𝑋⃗ .   Given t he B oltzmann e ntropy f ormula: 
𝑆 = −𝐾𝐵 ∑ 𝑠𝑖 log 𝑠𝑖 𝑘

𝑖 , of i ndependent 𝑠𝑖  sources, the m -
components general ANN f ormulism r equires m atrix 
algebra n ot s hown h ere [ 9]. I n order t o ap preciate t he 
possibility o f b lind sources separation ( BSS) o f i ndividual 
pixel, we prove the exact solution of LCNN f or 2 
independent sources per pixel as follows. 
 
Exact Solution of LCNN: Theorem The a nalytical 
solution of LCNN of two sources is   

 
 

Figure 2: Exact LCNN pixel by pixel Solution 
 
 

𝑠1∗ = 1 − exp(−
𝐸𝑜∗

𝐾𝐵𝑇𝑜
) 

 
Derivation: Convert discret Boltzmann-Shannon entrpy to 
a single variable 𝑠1 by normalization 𝑠1 + 𝑠2   = 1.  

𝑆(𝑠1)
𝐾𝐵

=  −𝑠1 log 𝑠1 − 𝑠2 log 𝑠2 

     = −𝑠1 log 𝑠1 − (1 − 𝑠1) log(1 − 𝑠1),  

We consider the fixed point solution:  

𝑀𝑖𝑛.𝐻 =  𝐸 − 𝑇𝑜𝑆 =  0; 

so that 

  𝐸 = 𝑇𝑜 𝑆 = −𝐾𝐵𝑇𝑜[𝑠1 log 𝑠1 + (1 − 𝑠1) log(1 − 𝑠1)] 

The linear vector geometry predicts another equation: 

𝐸 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 𝑠1 = 𝐸𝑜∗ +
𝑑𝐸
𝑑𝑠1

(𝑠1 − 0) 

Consequently, the fixed point slope is computed 
𝑑𝐸
𝑑𝑠1

= 𝑇𝑜
𝑑𝑆
𝑑𝑠1

= 𝑇𝑜𝐾𝐵(log(1 − 𝑠1) − log 𝑠1). 

𝐸 = 𝐸𝑜∗ + 𝑇𝑜  
𝑑𝑆
𝑑𝑠1

𝑠1 = 𝐸𝑜∗ + 𝑇𝑜𝐾𝐵(log(1 − 𝑠1) − log 𝑠1)𝑠1 

Two f ormulas m ust b e eq ual t o each  o ther at 𝑠1 = 𝑠1 ∗ 
yields  
  𝐸𝑜∗

𝐾𝐵𝑇𝑜
= − log(1 − 𝑠1∗).   Q.E.D. 

 
The c onvergence proof of  L CNN ha s be en gi ven by Dr . 
Miao’s thesis using N onlinear L CNN ba sed on K uhn-
Tucker augmented Lagrange methodology. (IEEE IP V.16, 
pp1008-1021, 2007). 
 

 
 

 
Figure 3:  A face picture and a normal noise are mixed by a 
point nonlinearly (top panel of 8 images; LHS sources) or 
linearly (bottom panel of 8 images; LHS sources). The top 
panel has furthermore a column-wise changing mixing matrix 
(space-variant NL mixing), while the bottom panel has a 
uniform or identical mixing matrix (space-invariant linear 
mxing). Since LCNN is a pixel-by-pixel solution, it is designed 
for a massive and parallel implementation (SIMD, a la Flynn 
taxonomy), LCNN can solve both the top and the bottom panel 
at the 3rd column. However, BSAO info-max algorithm cannot 
solve the top 4th column based on a NL space-variant mixing; 
only the bottom panel 4th column at a linear and identical 
mixing matrix for the batch ensemble average.   

2.15 Interdisciplinary Contributions  
Besides the  a forementioned, t he author i s a ware of  the  
interdisciplinary contributions made by mathematicians (e.g. 
V. Che rkassky, Jose P rincipe, L ei X u; Asim R oy); 
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physicists (e.g. John Taylor, David Brown, Lyon Cooper); 
and biologists (e.g. Ishikawa Masumi, Mitsuo Kawato, Rolf 
Eckmiller, Shio Usui); a s well a s engineers (e.g. Kunihico 
Fukushima,  K.S. N arendra, Robert He cht-Nielsen, Ba rt 
Kosko, G eorge Lendaris, Nikola K assabov, J acez Z urada, 
Cheng-Yuan Liou O f T aiwan U , You-Shu Wu of  T sing  
Hwa U , Huiseng Chi o f P eking U, Toshio F ukuda, Hideo 
Aiso of  5th Gen Computing, et a l.). The author apologized 
that he  c ould not c over t heirs and o thers younger 
contributors in this short survey. 

Combining I CA a nd C S line ar a lgebras pr oduced the  
Feature O rganized Sparseness ( FOS) t heorem i n S ect. 7 .  
Contrary to p urely r andom sparseness, the bi o-inspired 
turns out to have the additional meaning, i.e., the locations 
indicating dramatic moment o f c hanges a t s alient s patial 
pixel features. The measure of significance is quantified by 
the o rthogonal d egree among ad missible s tates o f AM 
storage [ 12]. T hus, t he a uthor r eviewed onl y t he m ath 
leading t o I CA unsupervised l earning t o e nlighten t he 
Compressive S ensing ( CS) c ommunity. Traditional ANNs 
learning are ba sed on  pa irs of exemplars wi th de sired 
outputs in the LMS errors, 𝑙2-norm performance. A decade 
later, modern ANN has evolved close to the full potential of 
unsupervised c onnectionists ( but still lack t he a rchitecture 
of self-organizing c apability).  We e mphasize i n t his 
review t hat the HVS i s a  r eal t ime p rocessing a t a 
replenishing firing rate of about 1/17 s econds; HVS 
operates a  s mart A M t racking o f t hose s elected i mages i n 
order t o be  retrieved i nstantly by  t hose orthogonal s alient 
features stored in the Hippocampus.  

 
3. Neuroscience Organized Sparseness 

We wish to help interdisciplinary readership appreciate the 
organization p rinciple o f spatiotemporal s parse orthogonal 
representation fo r Compressive S ensing. The pu rpose of  
sparse orthogonal representation is help increase the chance 
of pattern h its.   A sparse orthogonal representation in 
computer s cience i s {𝑒𝑖} = {(1,0,0,0. . ), (0,1,0,0, . . ), . ;  i =
1,2, . )} known  as  a  finite s tate m achine.  Human V isual 
System (HVS) has t aken Hubel Wiesel o riented edge map 
wavelet [Ψ1, . . ] that transform a sparse orthogonal basis to 
another a sparse feature representation,  

[𝑓1, . . ] = [Ψ1, . . ]𝑇[𝑒1, … ]    

which is not a mathematically “Purely Random Sparseness,” 
rather a  biologically “ Feature-orthogonal Organized 
Sparseness (F OS)”. We s hall briefly review N euroscience 
101 of HVS.  
 
3.1 Human Visual Systems (HVS)  
Physiologically speaking, t he H VS ha s a u niformly 
distributed f ovea c omposed of 4  m illion R G c olor vi sion 
cones for high resolution spot size.  2 millions B cones are 
distributed i n the pe ripheral out side t he c entral f ovea i n 
order t o r eceive t he high bl ue sky a nd t he l ow blue l ake 
water at 0.4𝜇 wavelengths. This is understood by a simple 
geometrical r ay i nversion of o ur orbital lens w hen t he 

optical axis is mainly focused on the horizon of green forest 
and bushes.  

Based o n Einstein’s wavelength-specific photoelectric 
effect, the G cones, which have Rhodopsin pigment 
molecules sensitive to green wavelengths shorter than 0.5𝜇, 
can p erceive trees, g rasses, an d bushes.  S ome primates 
whose G cone’s Rhodopsin suffered DNA mutation of (M, 
L)-genes, de veloped a remarkable c apability o f s potting 
ripe r ed f ruits hidden among gr een bushes with hi gher 
fructose c ontent a t a  l onger wavelength of about  0.7𝜇 . 
These primates c ould feed m ore o ffspring, a nd m ore 
offsprings inherited t he s ame t rait, wh o t hen had m ore 
offspring, and s o on , s o f orth. A bundant offspring 
eventually b ecame t ri-color Hom o sapiens (whose na tural 
intelligence m ay be  e ndowed by  God).  Ow ing t o t he 
mutations, it is not surprising that the retina is examined by 
means of RGB functional stained florescence.   

Millions of RG co nes were found un der a  microscope 
arranged i n a  s eemingly random sp arse pattern am ong 
housekeeping g lial ( Muller) c ells a nd B c ones i n t he 
peripheral of the fovea.  What is the biological mechanism 
for organizing sparse representation?  If too many of them 
directly a nd i nsatiately s end t heir responses t o t he brain 
whenever activated by the incoming light, the brain will be 
saturated, habituated, and complacent.  That’s perhaps why 
HVS developed a  summing layer consisting of millions of 
Ganglions (gang of lions). Massive photo-sensors cones are 
located at  t he s econd l ayer, shielded be hind a somewhat 
translucent ganglion layer. The Ganglions act as gatekeeper 
traffic cops between the eyes and the Cortex.  A ganglion 
fires only if the synaptic gap membrane potentials surpass a 
certain t hreshold.   This synaptic junction g ap impedance 
can serve a s a t hreshold suppressing random t hermal 
fluctuations.  It then f ires in t he Amplitude M odulation 
mode of m embrane p otential f or a  short distance, or  
Frequency M odulation mode of firing r ates for a l ong 
distance.  
 
3.2 Novelty Detection  
Our ancestors paid attention to novelty detection defined by 
orthogonal property among local center of gravity changes.  
Otherwise, our visual cortex may become complacent from 
too many routine stimuli.  Our ancestors further demanded 
a simple and rapid explanation of observed phenomena with 
paramount consequences (coded in A M of e -Brain). Thus, 
we developed a paranoid bias toward unknown events. For 
example, miracles must h ave m essages, r ather t han 
accidents; o r ‘ rustling bushes m ust be  a  c rouching t iger 
about to jump out,’ rather than ‘blowing winds’.  Thus, this 
meaning interpretation ha s be en ha rd w ired and stored i n 
the AM of H ippocampus of e-brain. That’s why in 
biomedical ex periments, car e m ust b e given w henever 
rounding of f de cimals. A double-blind protocol ( to t he 
analyst and volunteer participants) with a (negative) control 
is of ten de manded, i n order t o s uppress t he bi as of [ AM] 
interpretation toward False Positive Rate.  “In God we trust, 
all th e rest s how data.” NI H M otto.  W e now  kno w e ven 
given the data set, it’s not enough unless there is a sufficient 
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sampling in a double-blind with a control protocol (blind to 
the p atients and the researchers who ge ts the drugs or  the 
placebo, mixed with a control of no disease).  Dr. Naoyuki 
Nakao  thought in his e-brain about how to avoid potential 
kidney failure for high blood pressure patients who 
loseproteins. He co uld have b een a dvocating a n i ntuitive 
thought about the dual therapy of  hypertension drugs; that 
both ACE inhibitor upon a certain hormone and ARB acting 
in a  di fferent w ay on t he s ame hor mone s hould be 
cooperatively administrated together. The paper appeared in 
the L ancet J . and s ince Jan. 2 003, became t he t op 2  ci ted 
index in a decade. Swiss Dr. Regina Kurz discovered, “the 
data i s t oo p erfect t o be t rue for small s ample s ize of 366 
patients.” As a r esult, t his dual d rug t herapy h as af fected 
140K patients, causing a Tsunami of paper retractions at a 7 
folds increase.  
 
3.3 Single Photon Detection   
The ph otons, when detected b y co nes or r ods m ade o f 
multiple stacks of disks, converts the hydrocarbon chain of 
Rhodopsin pigment molecules from the cis configuration to 
trans configuration. A s a  result, the a lternating s ingle and 
double c arbon bonds of t rans c arbon c hains are s witching 
continuously in a domino ef fect until i t r eaches a nd 
polarizes t he  surface membrane pot ential.  Then, t he t op 
disk has a ‘ trans state’ and will not be recovered until it is 
taken car e of at t he m irror r eflection l ayer, an d c onverted 
back to the ‘cis state’ upward from the cone or rod base.  
A single signal photon at the physiological temperature can 
be seen at night. No camera can do that without cryogenic 
cooling (except s emiconductor C arbon N ano-Tube (CNT) 
IR sensor, Xi Ning & H. Szu). To detect a single moonlight 
photon, we must combat against thermal fluctuations 
at300𝑜 𝐾 ≅ 1

40
𝑒𝑉 .  H ow t he t hermal n oise i s can celled 

without cooling operated at physiology temperatures.  T his 
is a ccomplished by s ynaptic ga p junctions of a  s ingle 
ganglion integrating 100 rods.  These 100 Rod bundles can 
sense a  s ingle m oonlight p hoton (1𝜇~1 𝑒𝑉) because t here 
exist a  ‘ dark l ight’ c urrent w hen t here i s no l ight, a s 
discovered b y H agin [4]. Our ey e s upplies t he el ectric 
current energy necessary to generate the ‘dark currents.’ It  
is an ion c urrent m ade of  Potassium i nside t he R od a nd 
Sodium outside the Rod, circulating around each Rods. (i) 
Nature s eparates t he signal pr ocessing e nergy f rom t he 
signal information energy, because (ii) a single night vision 
photon does n ot have enough e nergy t o d rive t he s ignal 
current to the back of brain; but may be enough (iii) to de-
polarize the membrane potential to switch off the no s ignal 
‘dark current,’ by ‘negate the converse’ logic.   Any rod of 
the bundle of  10 0 r ods r eceives a single p hoton that can 
change the rod’s membrane potential to detour the ‘Hagins 
dark c urrents’ a way f rom t he R od.  C onsequently, it 
changes t he ganglion pre-synaptic junction membrane 
potential. A s a r esult, t he i ncoming photon c hanges t he 
membrane potential and the ganglion f ires a t 100Hz using 
different r eservoir energy bu dget f or reporting the 
information [ 4]. A s ingle ganglion s ynaptic j unction ga p 
integrating over these 100 rods bundle provides a larger size 

of t he bundle t o o vercomes ( v) t he s patial unc ertainty 
principle of a single photon wave mechanics.  These ( i~v) 
are l esson l earned f rom bi osensors. Another bi osensor 
lesson is MPD computing by the architecture as follows. 

3.4 Scale Invariance by Architecture  
The pupil size has nothing to do with the architecture of the 
rod de nsity distribution. T he density drops o ff ou tside the  
fovea, along t he polar radial di rection i n an e xponential 
fashion.  T hereby, the peripheral night vision can achieve a 
graceful de gradation of i maging object s ize. This fan-in 
architecture allows t he HVS t o a chieve scale i nvariance 
mathematically, as follows. These 1.4 millions night vision 
ganglion a xon f ibers a re s queezed uniformly t hrough the 
fovea channel, which closely packs them uniformly toward 
the LGN and vi sual cortex 17  in the ba ck o f he ad.  The 
densities o f Rods’ and B -cones increase f irst an d drop 
gently along the radial direction, in an exponential increase 
and decrease fashion: 

𝐼𝑛𝑝𝑢𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = exp(±𝑂𝑢𝑡𝑝𝑢𝑡 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛),  

which c an t herefore a chieve a  gr aceful de gradation o f t he 
size v ariances b y m eans of  a mathematical l ogarithmic 
transformation i n a  M PD f ashion wi thout c omputing, just 
flow through with the fan-in architecture. This is because of 
the inverse 𝑂𝑢𝑡𝑝𝑢𝑡 = ±log(𝐼𝑛𝑝𝑢𝑡) ≅ Output’, when Input 
= 2  x  I nput’ b ecause  log(2)  is n egligible. T his s ize 
invariance allows our ancestor to run in the moonlight while 
chasing af ter a significant o ther to integrate the i ntensity 
rapidly a nd continuously ove r the time w ithout 
computational slow down.  For photon-rich day vision, the 
high de nsity fovea g anglions r equire 100 H z f iring rate, 
which m ight require a  sharing o f t he common p ool of 
resources, b efore replenishing because t he molecular 
kinetics p roduces a n atural s upply d elay.  As a r esult, t he 
ganglions who use up t he r esource w ill i nhibit 
neighborhood g anglions f iring r ates, pr oducing the lateral 
inhibition o n-center-off-surround, t he s o-called H ubel a nd 
Wiesel oriented edge wavelet feature map [𝜓𝑛].[5]  

3.5 Division of Labor 
It’s natural t o di vide o ur l arge brain i nto l eft a nd right 
hemispheres c orresponding t o o ur s ymmetric b ody l imbs 
reversely. Ne urophysiologic s peaking, w e s hall di vide o ur 
‘learning/MPD s toring/thinking’ p rocess i nto a  balanced 
slow and fast process.  In fact, Nobel Laureate Prof. Daniel 
Kahneman w rote a bout t he decision m aking by  s low a nd 
fast thinking in his recent book published in 2011. We may 
explain the quick thinking in terms of  intuitive thinking of 
the emotional side of  right hemisphere (in short ‘e-Brain’) 
& the logical slow thinking at the left hemisphere, ‘l-Brain’.  
In fact, Eckhard Hess conducted experiments demonstrating 
pupil dynamics (as the window of brains) which is relaxed 
in a dilation state during a hard mental task which uses up 
mental energy and contracted iris to fit the intensity needed 
once t he c omputing t ask i s c omplete. We w ish to 
differentiate by designing different tasks which part of the 
brain (l-brain, e-brain) is doing the task. This way we may 
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find the true time scale of each hemisphere.  For example, 
putting together a jigsaw puzzle depicting a picture of your 
mother or  a  boring geometry pa ttern m ay i nvolve t he e-
Brain or l-Brain. How fast can our e-brain or l-brain do the 
job?   I n the cortex center, there are pairs of MPD storages 
called t he hippocampus, w hich a re closer to e ach other i n 
female than male.  

The f emale m ight be  more a dvanced than m ale f or a 
better l ateralization a nd e nvironmental-stress s urvivability. 
The faster l earning o f s peech, when a f emale is young or  
the female has a better chance of recovery when one side of 
the brain was injured.   Such a division of labors connected 
by the lateralization seems to be natural balance to build in 
ourselves as a self-correction mechanism.  

3.6 Lateralization between e-Brain & l-Brain  
According t o F. C rick & C . K och in 200 5, t he 
consciousness layer is a wide & thin layer, called Claustrum, 
located underneath t he c enter brain a nd a bove t he l ower 
part lizard brain. The Claustrum acts like a music conductor 
of brain sensory orchestra, tuning at a cer tain C note for all 
sensory i nstruments (by t he winner-take-all masking 
effect).The ex istence o f a c onscious t oning r emains t o b e 
experimentally co nfirmed ( e.g. s tudying an  anesthesia 
awakening might be  good i dea). I t c ould be  a bove t he 
normal EEG brain waves types known as alpha, beta, theta, 
etc., and underneath the decision making neuron firing rate 
waves at 1 00 H z. This pa ir of  hippocampus r equires the 
connection m ediated by t he C laustrum k nown as  t he 
Lateralization.  According t o t he e quilibrium minimum of 
thermodynamic He lmholtz f ree e nergy, t he s ensory 
processing indeed happens effortlessly at the balance 
between m inimum e nergy a nd m aximum entropy, we a re 
operating at.  

The s parse o rthogonal i s necessary f or HVS, b ut also 
natural for b rain n euronal r epresentation. W e h ave 1 0 
billion neurons and 100 billion synapses with some 
replenishment a nd regeneration, t he s ynapses c ould l ast 
over 125 years.  An other reason the s parse o rthogonal 
representation i s not l oaded up w ith a ll t he degree of 
freedoms a nd no longer has a f ree will f or ge neralization.  
In ot her w ords, unlike a  r obot ha ving a  l imited m emory 
capacity a nd computing c apability, we  p refer t o keep o ur 
brain degrees of f reedom a s s parse a s p ossible, a bout 10  
~15% level ( so-called t he l east d eveloped place on t he 
Earth) about 1 0% x 1020 ⊇ 𝑒𝑛𝑐𝑦𝑐𝑙𝑜𝑝𝑒𝑑𝑖𝑎 𝐵𝑟𝑖𝑡𝑡𝑎𝑖𝑛𝑐𝑎 . T odd 
and M arols i n Na ture 2 004 [6] s ummarized t he c apacity 
limit o f visual s hort-term memory i n human P osterior 
Parietal Cortex (PPC) w here s parsely a rranged n euronal 
population called grandmother neurons fires intensely for 1 
second without di sturbing ot hers, supporting o ur 
independence c oncept yielding ou r or thogonality attribute.  
The ‘ grandmother ne uron(s)’ m ay be  a ctivated by  other 
stimulus a nd memories, but i s t he sole representation of  
‘grandmother’ f or t he i ndividual.  To substantiate t he 
electric brain response as a  differential r esponse of visual 
event related potentials, Pazo-Alvarez et al in Neuroscience 
2004 [ 7] reviewed various m odalities o f brain i maging 

methodologies, and confirmed the biological base of feature 
organized s parseness (FOS) t o be based o n a utomatic 
comparison–selection of changes.  “How m any views o r 
frames doe s a monkey need i n order t o t ell a  good 
zookeeper from a b ad one?”  Monkeys select 3 distinctive 
views, wh ich w e re fer to as m f rames: f rontal, side and a  
45o view [8].  Interestingly, humans need only m = 2 views 
when c onstructing a  3-D b uilding f rom a rchitectural 
blueprints, or for visualizing a human head.  These kind of 
questions, posed by Tom Poggio et al. in 2003 [8], can be 
related to an important medical imaging application.     
 

4. Orthogonal Sparse States of Associative 
Memory 

Since t he s emiconductor s torage t echnology has become 
inexpensive or ‘silicon dirt cheap,’ we can apparently afford 
wasteful 2 -D MPD AM storage for 1 -D vectors. Here, we 
illustrate h ow MPD AM c an r eplace a  current digital d isk 
drive s torage, a -pigeon-a-hole, wi thout s uffering recall 
confusion and search delays.  The necessary and sufficient 
condition of such AM admissible states requires that rank-1 
vector o uter product is orthogonal a s depicted i n F ig.4.  
Thus, we recapitulate the essential attributes, sparseness and 
orthogonality as follows.  

4.1 Connectionist Storage  

Given facial images𝑋⃗𝑁,𝑡, three possible significant or salient 
features such as the eyes, nose, and mouth can be extracted 
in the rounding-off cool l imit with the maximum firing rate 
of 100 Hz to one and lower firing rates to zero: (1, 0) ≡ (big, 
small).  When these neuronal f iring rates broadcast among 
themselves, t hey f orm t he Hippocampus [AM] a t t he 
synaptic ga p j unctions denoted by  the w eight matrix𝑊𝑖,𝑗 .  
For a n e xample, w hen a  s mall c hild is first in troduced to 
his/her Aunt and U ncle, in f act the i mage o f U ncle ge ts 
compared with A unt employing t he 5  senses.  Further, 
fusion of information from all senses is conducted beneath 
the cortical layer through the Claustrum[13]. The child can 
distinguish Uncle by multi-sensing and noticing that he has 
a normal sized mouth (0), a bigger (1) nose as  compare to 
Aunt, a nd normal s ized ey es ( 0).  T hese features can  b e 
expressed as  firing r ates f old ≡ (n1, n 2, n 3) ≡ (eye, n ose, 
mouth) ≡ (0, 1,  0) which t urns o ut t o be  t he 
coordinate  𝑦� axis o f t he f amily f eature s pace.  L ikewise, 
the pe rception of an A unt with big (1) e yes, s maller ( 0) 
nose, a nd smaller ( 0) mouth ( 1,0,0) f orms a nother 
coordinate a xis 𝑥� . Mathematically k /N=0.3 s election of 
sparse saliency features satisfies the orthogonality criterion 
for A NN classifier.  This ANN s parse cl assifier not on ly 
satisfies t he n earest n eighbor cl assifier principle, but a lso 
the Fisher’s M ini-Max c lassifier c riterion f or intra-class 
minimum spread and inter-class maximum separation [9]. 
Alternatively, when Uncle smiles, the child generates a new 
input feature set fnew ≡ (n1, n2, n3) ≡ (eye, nose, mouth) ≡ (0, 
1, 1) through the same neural pathway.  Th en the response 
arrive at the hippocampus where the AM system recognizes 
and/or corrects the new input back to the most likely match, 
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the b ig-nose Uncle state (0, 1 , 0) w ith a fault tolerance o f 
direction cos(45o). We write ‘data’ to the AM by an outer-
product ope ration b etween the U ncle’s feature v ector in 
both c olumn a nd r ow f orms and overwrite Aunt’s d ata t o 
the same 2 -D storage w ithout c ross t alk confusion. T his 
MPD happens among hundred thousand neurons in a local 
unit. The c hild reads Uncle’s smile as a n ew input.  T he 
AM m atrix vector i nner product r epresents t hree f eature 
neurons (0,1,1) that are sent at 100 Hz firing rates through 
the AM architecture of Fig. 1c.  F urther, the output (0,1,0) 
is obtained a fter a pplying a  sigmoid 𝜎𝑜 threshold t o e ach 
neuron which confirms that he  r emains to be the big nose 
Uncle.  

4.2 Write  
Write by the ve ctor out er p roduct repeatedly over-written 
onto the identical storage space forming associative matrix 
memory [A M].  O rthogonal fe atures a re n ecessarily f or 
soft failure indicated in a 3-dimensional feature subspace of 
N-D. 
 

[𝐴𝑀]𝑏𝑖𝑔 𝑛𝑜𝑠𝑒 𝑢𝑛𝑐𝑙𝑒 = 𝑜𝑢𝑡𝑝𝑢𝑡��������������⃗ ⊗ 𝚤𝑛𝑝𝑢𝑡�����������⃗ =

[0 1 0]

�
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1
0
� �

0 0 0
0 1 0
0 0 0

� 

 

[𝐴𝑀]𝑏𝑖𝑔 𝑒𝑦𝑒 𝑎𝑢𝑛𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡��������������⃗ ⊗ 𝚤𝑛𝑝𝑢𝑡�����������⃗ =

[1 0 0]

�
1
0
0
� �

1 0 0
0 0 0
0 0 0

� 

 
MPD over-writing storage: 
 

[𝐴𝑀]𝑏𝑖𝑔 𝑛𝑜𝑠𝑒 𝑢𝑛𝑐𝑙𝑒 + [𝐴𝑀]𝑏𝑖𝑔 𝑒𝑦𝑒 𝑎𝑢𝑛𝑡 = �
1 0 0
0 1 0
0 0 0

� 

 
4.3 Read  
Read by the vector inner product recalling from the sparse 
memory t emplate a nd employing the ne arest neighbor  to 
correct input data via the vector inner product: 
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4.4 Fault Tolerant  
AM erases the one-bit error (the lowest bit) recovering the 
original s tate w hich i s equivalent t o a  s emantic 
generalization: a  b ig nosed s miling uncle i s s till t he s ame 
big nos e unc le.   T hus f or s torage purpose,  t he 
orthogonality c an produce e ither f ault t olerance o r a 
generalization as t wo s ides o f t he same co in acc ording t o 
the or thogonal or  i ndependent f eature ve ctors.  In ot her 
words, d espite h is s mile, t he A M s elf c orrected the soft 
failure degree about the degrees of  sparseness30% ≅ 𝑘

𝑁
=

0.3, or generalized the original uncle feature set depending  

 
 

 
(a) (b) (c) 

Figur 4a: Feature organized sparseness (FOS) may serve as 
the fault tolerance attribute of a distributive associative 
memory matrix.  When a child meets his/her Aunt and Uncle 
for the first time, the child pays attention to extract three 
features neurons which fire at 100 Hz or less, represented by 1 
or 0 respectively.  Figure 4b:  Even if uncle smiled at the 
child (indicated by (0,1,1) in the first quadrant), at the next 
point in time, the child can still recognize him by the vector 
inner product read procedure of the [AM] matrix and the new 
input vector (0, 1, 1). A smiling uncle is still the uncle as it 
should be. Mathematically speaking, the brain’s Hippocampus 
storage has generalized the feature vector (0, 1, 0) to (0, 1, 1) 
for a smiling big nose uncle, at the [AM] matrix. However, if 
the feature vector is over-learned by another person (0, 0, 1), 
the degree of freedom is no longer sparse and is saturated.  In 
this case, one can no longer have the NI capability of the 
innate generalization within the subspace.   Fig.4c: This 
broadcasting communication circuitry network is called the 
artificial neural network (ANN) indicating adjustable or 
learnable weight values {Wij; i,j=1,2,3} of the neuronal 
synaptic gaps among three neurons indicated by nine 
adjustable resistances where both uncle and aunt features 
memory are concurrently stored. 
 
 
on C laustrum f usion l ayer [ 13] for s upervision.  We 
demonstrate t he necessary an d s ufficient c onditions of 
admissible A M s tates t hat ar e s ampled b y t he selective 
attention called the novelty detection defined by significant 
changes f orming an orthogonal subspace. Further, t he 
measure of  significance is defined as degree of orthogonal 
within the subspace or not. 
(i) We t ake a  binary t hreshold of  a ll t hese orthogonal 

novelty change vectors as the picture index vectors [12].  
(ii) We take a sequential pa ir of  pi cture index ve ctors 

forming a vector outer-product in the 2-D AM fashion.   
(iii) Moreover, we t ake t he o uter p roduct between t he 

picture index v ector and its o riginal h igh r esolution 
image v ector i n a  hetero-associative m emory ( HAM) 
for instantaneous image recovery.     

 
Thus, t hese 2 -D AM  &  HAM matrix memory will b e t he 
MPD storage spaces where all orthogonal pair products are 
over-written and overlaid without the need of search and the 
confusion of  or thogonal PI r etrieval.  Consequently, A M 
enjoys the generalization by discovering a new component 
of the degree of freedom, cf. Section 4.   

5. Spatiotemporal Compressive Sensing 
The s oftware can t ake o ver t racking t he local c enter o f 
gravity ( CG) changes of t he ch ips- 1) s eeded w ith the 
supervised as sociative m emory o f pairs of i mage 
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foreground chip (automatically cut by a  built-in system on 
chip (SOC)), and 2) its role play (by users in the beginning 
of videotaping). The vector CG changes frame by frame are 
accumulated to form a net vector of CG change. The tail of 
a current change vector is added to the head of the previous 
change vector u ntil t he n et ch ange vector b ecomes 
orthogonal to the previously stored net CG vector. Then, the 
code will u pdate t he n ew net CG change vector with t he 
previous one i n t he outer pr oduct hetero-associative 
memory (HAM), k nown a s M otion Organized Sparseness 
(MOS), or Feature-role Organized Sparseness (FOS). Then, 
an optical e xpert system ( Szu, Ca ulfield, 1 987) can b e 
employed to fuse the interaction library (IL) matrix [HAM] 
(IL-HAM) i n a  massive p arallel d istributive ( MPD) 
computing f ashion. Building t he t ime or der [ AM] o f e ach 
FOS, MOS, and [HAM] of IL, we wish to condense by ICA 
unsupervised learning a  c omposite pi cture of  a  simple 
storyline, e.g. YouTube/BBC on eagle hunting a rabbit.  

We have defined [ 12] a  significant e vent i nvolving a  
local C enter of Gravity ( CG) m ovement s uch a s t iger 
jumping out o f f luffing a round b ushes ( Fig.5). The 
processing window size may have a variable resolution with 
learnable window sizes in order to determine the optimum 
LCG m ovement.  T his m ay be  e stimated by  a  windowed 
Median f ilters ( not M ean f ilter) u sed t o select majority 
gray-value de legating-pixel locations a nd i mage w eight 
values according to the local grey value histogram (64x64, 
32x32, 16x16, etc.).  Then we draw the optical flow vector 
from one local delegator pixel location to the next pointing 
from one  t o t he next. T he l ength o f t he vector is 
proportional t o t he delta c hange o f gray va lues a s t he 
delegator w eights. Similarly, w e apply this M edian F ilter 
over all w indows for two frames.  We c an s equentially 
update multiple f rames employing optical f low vectors for 
testing the net summation.  In this process, one vector tails-
to-another vector head i s plotted t o c over a  s ignificant  
movement ove r ha lf of t he window s ize.  Then t he ne t is 
above t hreshold with t he value of ‘ one’ r epresenting t he 
whole w indow population to b uild a  Picture Index ( PI) 
(indicating a tiger might be jumping out with significant net 
CG movement); otherwise, the net CG will be threshold at 
zero ( as t he wind i s bl owing t ree branches o r bushes i n a 
cyclic motion without a net CG motion).  We could choose 
the largest jump CG among f frames. 

Toward digital automation, we  extracted the foreground 
from ba ckground by c omputing t he local h istogram based 
optical f low without t racking, in terms of  a s implified 
medium f ilter finding a  local center o f g ravity (CG).  
Furthermore, we generated the picture i ndex ( PI-AM) and 
the image-index (Image-HAM) MPD AM correlations [12].  
We co njecture (TBD) another [HAM] of a n i nteraction 
library (IL -AM) for f usion of s toryline s ubroutine (Szu &  
Caulfield “O ptical Expert System,” A pp O pt. 1988 ) 
sketched as f ollows: A I p ointer r elational database, e .g. 
Lisp 1-D array (attribute (color), object (apple), values (red, 
green)) are represented by the vector outer products as 2-D  
AM maps.  These maps are added with map frequency and 
restore a  m issing partial 2 -D p attern as  a new hy pothesis.  
This t ype of  interaction l ibrary c an di scover s ignificant  

 
Figure 5: Net C.G. Automation [12]: (5a) Video images of a 
tiger is jumping out of wind-blowing bushes (Augmented 
Reality); (5b) The net Center of Gravity (CG) optical flow 
vectors accumulating f=5 frames reveals the orthogonal 
property to the previous net CG, capturing a Tiger jumping 
out region. This net CG motion of moving object (tiger) is 
different than wind-blowing region (bushes) in cyclic 
fluctuations; (5c) indicate an associated Picture Index sparse 
representation (dark blue dot consists of net CG vectors 
represented by ones, among short lines by zeros). 

 
roles from selected foreground frames by generalizing AM.  
Further, this IL AM will follow the constructed storyline to 
compose these significant roles into a Video Cliff Note for 
tourist picture diary. For an example, a predator-prey video 
of about 4.5 m inutes lon g was B BC c opyrighted.  
Following t he s teps l isted a bove, we h ave developed 
compressive sampling (CSp) video based on AM in terms 
of motion organized sparseness (MOS) as the picture index 
forming [ AM] an d i ts i mage as  Hetero-AM [12].   
Moreover, w e have e xtended the c oncept w ith   m ajor 
changes shown as an automatic Video Image Cliff Notes. 

The lesson learned from the predator-prey BCC video is 
summarized in the Cliff Note, Fig.6, where a rapid change 
& s tay-put a s th e k eys for s urvivor(optical e xpert s ystem, 
video Cliff Notes, SPIE DSS/ICA conf. Baltimore April, 2012). 

6. Spatial-spectral Compressive Sensing 
Theory 

We sketch a d esign of a new Smartphone camera that can  
take either daytime or nighttime picture with a single HVS 
focal plane array (FPA). Each pixel has a 2x2 Byres filter, 
which splits 1𝜇~1eV in quarter sizes and corrects different 
wavelength differences. Thus the filter trades off the spatial 
size r esolution f or i ncreasing t he spectral r esolution. T he 
camera a dopts M PD [AM] &  [ HAM] s torage i n S SD 
medium. Such a handheld device may eventually become a 
personal secretary that can self-learn owner’s habits, follow 
the itinerary w ith G PS d uring travel, and k eep d iary a nd 
send s ignificant e vents. We can r elax t he ‘purely r andom’ 
condition o f the s parseness s ampling m atrix [Φ]  with 
feature o rganized sparseness [Φs] , wh ere 1s indicate t he 
locations of potential discovery of features. 
 
Theorem:  Feature Organized Sparseness (FOS)  

We s hall d erive a t heorem to de sign I CA U nsupervised 
Learning m ethodology c an help de sign F OS C S s ampling 
matrix [Φs] 

[Φs][Ψ] ≡ [𝐼𝐶𝐴];   [Φs] = [𝐼𝐶𝐴][Ψ]−1 (9) 

where {𝜓𝑛} is the Hubel-Wiesel w avelet modeled b y t he  
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digital sub-band wavelet bases successfully applied to JPEG 
2000 i mage c ompression a nd 𝑠  is a co lumn vector of  
feature sources [Φs]  by solving ICA unsupervised learning. 
Feature Organized Sparseness (FOS) Compressive Sensing 
works not only for video motion features, but also for color 
spectral features if we treat the spectral index as time index. 
Proof: We c an r eadily ve rify t he r esult b y c omparing t he 
CS l inear a lgebra w ith t he I CA unsupervised learning 
algebra side-by-side as follows:   

𝑅𝑁 𝑋⃗ = ∑ 𝑠𝑛𝜓𝑛 = ∑ 𝑠𝑛𝑘𝜓𝑛𝑘
𝑘
𝑛𝑘=1

𝑁
𝑛=1 = [Ψ],    (10) 

where k non-zero wavelets are denoted 𝑛𝑘=1,2,…,k <<N. 
𝑅𝑚:  𝑌���⃗ = ∑ 𝑥𝑖𝜙𝑖𝑇𝑚

𝑖=1 = [Φs]𝑋⃗ ;   (11) 
Substituting Eq(7) into Eq(8), the linear matrix relationship 
yields a desired exemplar image 𝑌�⃗  which has the unknown 
mixing matrix [ICA] and the unknown feature sources 𝑠 
𝑌�⃗ = [Φs][Ψ]𝑠 ≡ [𝐼𝐶𝐴]𝑠.    Q.E.D.  
 
Adaptive Compressive Sensing:  
We can exploit the full machinery of unsupervised learning 
ANN c ommunity a bout h ow t o s olve t he B lind S ources 
Separation (BSS).  We c an e ither follow t he L agrange 
Constraint Neural N etwork ba sed on minimizing t he 
thermodynamic p hysics Helmholtz f ree en ergy by 
maximizing the a -priori s ource e ntropy [ 9] or t he 
engineering f iltering c oncept o f m aximizing t he posterior 
de-mixed entropy of the output components [10].  For the 
edifice o f t he CS c ommunity t hat BS S i s i ndeed p ossible, 
we h ave recapitulated t he simplest p ossible l inear a lgebra 
methodology with a simple proof as follow.  

 (i) Symmetric Wi ener W hitening i n ensemble av erage 
matrix [𝑊𝑧]𝑇 = [𝑊𝑧] =< �𝑌�⃗ 𝑌�⃗ 𝑇� >−12.  
By definition 𝑌�⃗ ′ ≡ [𝑊𝑧]𝑌�⃗  satisfying  

 < 𝑌�⃗ ′𝑌�⃗ ′
𝑇

>≡ [𝑊𝑧] < 𝑌�⃗ 𝑌�⃗ 𝑇 > [𝑊𝑧]𝑇 = [𝐼] 
∵ [𝑊𝑧] < 𝑌�⃗ 𝑌�⃗ 𝑇 > [𝑊𝑧]𝑇[𝑊𝑧] = [𝐼][𝑊𝑧] = [𝑊𝑧]; 

∴ [𝑊𝑧]𝑇[𝑊𝑧] =< �𝑌�⃗ 𝑌�⃗ 𝑇� >−1; [𝑊𝑧] =< �𝑌�⃗ 𝑌�⃗ 𝑇� >−12  Q.E.D. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(ii) Orthogonal Transform: [𝑊]𝑇 = [𝑊]−1  
By definition 
[𝑊]𝑌�⃗ ′ = [𝑊][𝑊𝑧]𝑌�⃗ = [𝑊][𝑊𝑧][Φs][Ψ]𝑠 ≡
[𝑊][𝑊𝑧][𝐼𝐶𝐴]𝑠 = 𝑠  
∵ [𝑊] < 𝑌�⃗ ′𝑌�⃗ ′

𝑇
> [𝑊]𝑇 ≡ [𝑊][𝐼][𝑊]𝑇 =< 𝑠𝑠𝑇 >≅ [𝐼];  

∴ [𝑊]𝑇 = [𝑊]−1     Q.E.D. 

The S tep ( ii) can r educe I CA d e-mixing t o o rthogonal 
rotation. We can c ompute from t hese d esired ex emplar 
images from their corresponding sources employing simple 
geometrical solutions called the killing vector.  T his vector 
is orthogonal to a ll row vectors except fo r one, c f. Fig. 1. 
Further t he rotation p rocedure g enerates a corresponding 
independent source along the specific gradient direction.    

Since we h ave applied ( i) W iener w hitening in image 
domain, and ( ii) o rthogonal matching pursuit to derive the 
feature sources, w e ca n estimate b y a pair t he de sired 
exemplar images with so-constructed feature sources by the 
rank-1 AM approximation of ICA mixing matrix [ICA]: 

[𝐼𝐶𝐴] = ∑ 𝑦⃗𝑠𝑇 = [𝑦⃗1, 𝑦⃗2, . . . ][𝑠1, 𝑠2, . . ]𝑇.     (12) 
The correct CS linear pr ogramming could be us ed t o 
compute a 𝑙1-norm sparse constrained source representation 
𝑠 of t he i nput 𝑌�⃗  in t he LMS e rror sense.  Our ex perience 
indicates a de sirable or thogonality post-processing. G iven 
all independent sources, we construct the orthogonal 1s (by 
the Gram-Schmidt procedure) < 𝑠𝑠𝑇 > ≅ [𝐼].    

[Φs] ≅ [𝑦⃗1, 𝑦⃗2, . . . ][𝑠1, 𝑠2, . . ]𝑇[Ψ]−1.       (13) 

Furthermore, we p refer t he o rthogonal feature e xtraction 
[Φs] such that < [Φs] [Φs]T >≅ [𝐼].   In do ing so, w e 
can i ncrease t he e fficiency o f m ulti/hyper-spectral 
compressive s ensing methodology he lping “finding a  
needle in a haystack” by sampling only the image correlated 
to t he ne edle s ources {𝑠1, 𝑠2, . } without u nnecessarily 
creating a h aystack o f d ata cu be blindly. (cf. Balvinder  
Kaur, et al., 2012 SPIE DSS/ICA Comp Sampling etc Conf. 
Baltimore) 
 

Figure 6:  A predator-prey video of about 4.5 minutes long was taken from YouTube/BBC for education & research purposes.    
It emulated unmanned vehicle UXV (X=A,G,M) useful Intelligence Surveillance Reconnaissance. An eagle cruising gathered the 
intelligence by a few glimpse of a moving prey during the surveillance in the sky; after identifying it as a jumping rabbit, the eagle 
made a chase engagement, closed its wings and dropped at the rabbit.  Rabbit was detected via moving shadow, stayed 
motionless avoiding motion detection.  The rabbit jumped away from the ground zero whereas the eagle lost its ability to 
maneuver due to semi-closed wings at terminal velocity and suffered a heavy fall. (2.11 AM Expert System is adopted to compile 
the image chiplets). 
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7. Handheld Day-Night Smartphone Camera 
Our goa l is m aking a ne w handheld smartphone cam era 
which can take both daytime and nighttime pictures with a 
single photon detector array. It can automatically keep and 
send on ly tho se significant frames cap able o f discovering 
motions a nd features.  O ur design l ogic i s s imple: ne ver 
imaging daytime pictures with nighttime spectral, and vice 
versa, in a  photon poor lighting or in the night do not take 
daytime co lor s pectral picture. Of c ourse, a s imple cl ock 
time will do the job; but a smarter approach is through the 
correlation between exemplar images and desired f eatures. 
We wish t o design t he ca mera w ith over-written 2 -D 
storage in a MPD fashion, in terms of a FOS following the 
AM F T P rinciple. We c an a void t he c ross-talk c onfusion 
and u nnecessary r andom acces s m emory ( RAM) s earch-
delay, b ased on t he t raditional 1 -D s equential o ptical CD  
technology s torage c oncept: a  pigeon-a-hole. This i s a  
natural application o f o ur F eature Or ganized Sparseness. 
We can build a full EOIR spectrum fovea camera applying 
a g eneralized B ayer f ilters u sing spectral-blind P hoton 
Detectors ( PD) e mulating c ones a nd r ods pe r pixels. We 
mention that a current camera technology applied the Bayer 
color i mage filters ( for RG B c olors). We  trade t he s patial 
resolution with spectrum r esolution.  We  take t he spectral 
blind photon detector a rray of  N pi xels to m easure N /4 
color p ixels.  We m odify t he B ayer f ilter to b e 4x4 pe r 
pixel and the extra 4th one is for extra night vision a t near 
infrared 1 micron spectrum. We further correct optical path 
difference a t n ew Ba yer f ilter m edia i n order t o focus a ll 
spectrum on t he same FPA, without the need of expensive 
achromatic correction in a compound lens. 

Our mathematical basis is derived by combining both CS 
and I CA f ormulism, E qs(6,7,8), a nd a pplying ICA 
unsupervised learning steps ( i) &  ( ii) to de sign a F OS 
sampling matrix [Φs]. F inding a ll the independent sources 
vectors f rom input da y or  ni ght images 𝑦⃗ ′𝑠  we c ollect 
expected s ources 𝑠′𝑠  into a  ICA m ixing m atrix [𝐼𝐶𝐴] =
∑ 𝑦⃗𝑠𝑇 , then substituting its equivalence to CS sampling we 
can design F OS s ampling matrix a s [Φs] = [𝐼𝐶𝐴][Ψ]−1 
where [Ψ] is usual i mage w avelet b asis. The h ardware is 
mapping the sparse feature sampling matrix onto 2x2 Bayer 
Filters p er pixel t hat c an a fford t o t rade t he s patial 
resolution with the spectral resolution in close up shots.   

In t his paper, we have f urther e xtended M otion 
Organized S parseness [ 12] with F eature Organized 
Sparseness c ompositing t wo main pl ayers as a  prey a nd a 
predator, namely a rabbit and an eagle. Their interaction is 
discovered by  their chase after each other optical f lows as 
shown in Fig. 6 as an automatic Video Image Cliff Notes.   
Instead the purely random sparseness, we have generalized 
CS sampling matrix [Φ] with FOS sampling matrix[Φs].  

In cl osing, w e co uld es timate t he c omplexity ef fect o f 
replacing purely r andom s parseness [Φ]  with F OS [Φs] 
upon t he C RT&D R IP t heorem.  We c ould a pply the  
complexity analysis tool called Permutation Entropy [14]. 
PE c omputes computed i n a  moving window of t he s ize 
L=2,3, e tc., c ounting t he up-down shape feature of  one s 
over t he z eros: 𝐻(𝐿) ≡ −𝑝(𝜋)∑𝑝(𝜋) of the k-organized 

sparseness t o set a b ound t he s ampling ef fect f rom p urely 
random one s.  F or e xample, a n organized sampling m ask 
[Φs]m,N  had a  r ow of { 0,1,1,0,0,0…} which y ielded a  
moving window of size L=2: in 4 cases[ {01} up, {11}flat, 
{1,0}down; {0,0}flat, etc.]; size L=3 yields 3 
cases[{0,1,1}up, { 1,1,0}down; { 1,0,0}down, { 0,0,0} f lat, 
etc.]. They had shown H(L) to be bounded from organized 
structure with one s l ocations ( degree of c omplexity) t o 
purely r andomness (zero co mplexity)  as 0 ≤ 𝐻(𝐿) ≤
𝑙𝑜𝑔 𝐿! ≅ 𝐿 𝑙𝑜𝑔𝐿 − 𝐿 , by  Sterling f ormula where 
𝐿 ≪ 𝑘 ≪ 𝑁.  0 ≅ 𝑃𝐸([Φs]m,N) ≪ 𝑃𝐸([Φ]m,N) ≅ 0(𝐿)  
Therefore, i nstead of i ntractable 𝑙0 -constraint, w e could 
equally use 𝑙1 -constrained LMS to both [Φs]𝑚,𝑁 and 
[Φ]𝑚,𝑁, i f we  were not a lready c hoosing H AM MPD f or 
real time image recover [12].  

Our teaching of the fittest survival may be necessary for 
early be haviors. T he t rue s urvival of human s pecies   has 
to be co-evolved with other species and the environment we 
live in. This natural intelligence should be open and fair to 
all w ho a re no t so bl indly focused by a n arrowly de fined 
discipline a nd eg o. T his i mbalance l eads to u nnecessary 
greediness, affecting every aspect of our life.  I publish this 
not f or m y ne ed t o survive; but t o pay back t he 
Communities who have taught me so much. The reader may 
carry on t he unsupervised l earning r unning on t he f ault 
tolerant an d s ubspace-generalize-able c onnectionist 
architectures.  Incidentally, Tai Ch i p ractitioners b y t he 
walking m editation co nsider t he L ao T ze’s ad vocated 
mindless s tate, w hich i s a  b alance b etween a  f ast t hinking 
(Yin, l ight g ravity w eight) and a  s low a nalyzing (Yang, 
heavy gravity weight). The transcendental meditation could 
achieve a l ow f requency brain wave ( EEG Delta t ype), 
having t he l ong w avelength r eaching b oth s ides o f t he 
hemispheres a s t he l ateralization. I f w e were just relaxing 
your conscious-mind controlling m uscles, and let the 
gravity potential takeover, the internal fluids that circulates 
freely i nsider our i nternal organs k nown a s ‘ the C hi’ c an 
which c an e nhance t he wellbeing a bout our p hysiology 
metabolism. 
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Abstract 
Spatio- and s pectro-temporal d ata (S STD) are t he m ost c ommon 
types of d ata c ollected i n m any dom ain a reas, including 
engineering, bi oinformatics, neuroinformatics, eco logy, 
environment, medicine, economics, etc. However, there is lack of 
methods for t he e fficient analysis of s uch da ta a nd for s patio-
temporal p attern re cognition ( STPR). T he bra in func tions a s a  
spatio-temporal i nformation processing m achine a nd d eals 
extremely w ell with spatio-temporal data. It s orga nisation and 
functions ha ve been t he inspiration for  t he d evelopment of  ne w 
methods for SSTD analysis and STPR. The brain-inspired spiking 
neural ne tworks (S NN) a re c onsidered the t hird ge neration o f 
neural networks and are a promising paradigm for the creation of 
new i ntelligent ICT  for S STD. T his ne w ge neration o f 
computational models a nd s ystems a re po tentially capable o f 
modelling complex i nformation processes due  to t heir a bility t o 
represent a nd i ntegrate d ifferent i nformation dimensions, such as 
time, space, frequency, and phase, and to deal with large volumes 
of da ta i n a n a daptive and s elf-organising m anner. T he p aper 
reviews m ethods a nd s ystems of S NN for S STD a nalysis a nd 
STPR, including s ingle neuronal models, evolving spiking neural 
networks (e SNN) a nd c omputational ne uro-genetic m odels 
(CNGM). Software and hardware implementations and some pilot 
applications for  a udio-visual pattern re cognition, E EG da ta 
analysis, c ognitive robot ic s ystems, BCI,  n eurodegenerative 
diseases, and others are discussed.  

Keywords: Spatio-temporal da ta, spectro-temporal da ta, pattern 
recognition, spiking ne ural ne tworks, gene re gulatory n etworks, 
computational ne uro-genetic m odeling, probabilistic m odeling, 
personalized modelling; EEG data. 

1. Spatio- and Spectro-Temporal Data 
Modeling and Pattern Recognition 

Most p roblems i n nature require s patio- or/and s pectro-
temporal data (SSTD) that include measuring spatial or/and 
spectral variables over time. SSTD is described by a triplet 
(X,Y,F), wh ere X is a  s et of  i ndependent va riables 
measured o ver co nsecutive d iscrete t ime moments t; Y is 
the set o f d ependent o utput v ariables, and F is t he 
association function between whole segments (‘chunks’) of 
the input data, each  sampled in a  t ime w indow dt, and the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
output variables belonging to Y:    

F: X(dt)→Y,  X(t)=(x1(t),x2(t),…,xn(t)), t=1,2, …,n  (1) 
It is important for a computational model to capture and 

learn whole spatio- and spectro-temporal patterns from data 
streams in order to predict most accurately future events for 
new input data. Examples of problems involving SSTD are: 
brain c ognitive s tate e valuation based o n s patially 
distributed EEG e lectrodes [ 70, 2 6, 5 1, 2 1, 99, 100] 
(Fig.1(a)); fMRI data [ 102] (Fig.1(b)); m oving o bject 
recognition from video da ta [ 23, 60, 25]  (Fig.15); s poken 
word recognition based on spectro-temporal audio data [93, 
107]; evaluating risk o f d isease, e.g. h eart attack [ 20]; 
evaluating response o f a  d isease t o t reatment b ased on 
clinical a nd environmental va riables, e .g. s troke [ 6]; 
prognosis of outcome of cancer [62]; modelling the 
progression of a  ne uro-degenerative d isease, su ch a s 
Alzheimer’s D isease [ 94, 6 4]; modelling and p rognosis o f 
the e stablishment o f i nvasive s pecies i n e cology [ 19, 9 7]. 
The prediction of events in geology, astronomy, economics 
and m any o ther ar eas al so d epend on accurate S STD 
modeling.    

The c ommonly us ed m odels for d ealing w ith temporal 
information based on Hidden Markov Models (HMM) [88] 
and traditional artificial n eural networks (ANN) [ 57] h ave 
limited cap acity to achieve the integration of complex and 
long t emporal s patial/spectral c omponents be cause t hey 
usually e ither i gnore t he t emporal di mension o r o ver-
simplify its representation. A new trend in machine learning 
is c urrently e merging and i s known a s deep m achine 
learning [9, 2 -4, 112]. M ost o f t he proposed m odels s till 
learn SSTD by entering single time point frames rather than 
learning whole S STD patterns. T hey a re a lso l imited i n 
addressing adequately the interaction between temporal and 
spatial components in SSTD. 

The human b rain has the amazing capacity to l earn and 
recall patterns from SSTD at different t ime scales, ranging 
from milliseconds to years and possibly to millions of years 
(e.g. ge netic i nformation, a ccumulated t hrough e volution). 
Thus t he brain i s t he ul timate i nspiration for t he 
development of new machine learning techniques for SSTD 
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(a) 

   
(b) 

Fig.1(a) EEG SSTD re corded w ith t he us e of E motive E EG 
equipment (fro m McFarland, A nderson, M Üller, Schlögl, 
Krusienski, 2006); (b) fMRI data (from http://www.fmrib.ox.ac.uk) 

 
modelling. Indeed, brain-inspired Spiking Neural Networks 
(SNN) [ 32, 33, 68] ha ve t he p otential t o learn S STD b y 
using t rains o f spikes (binary t emporal events) t ransmitted 
among spatially located synapses and neurons. Both spatial 
and t emporal information c an be  e ncoded i n a n S NN as  
locations of synapses and neurons and time of their spiking 
activity r espectively. S piking neurons s end s pikes via 
connections that have a  complex dynamic behaviour, 
collectively forming an SSTD memory. Some SNN employ 
specific l earning r ules s uch as S pike-Time-Dependent-
Plasticity (STDP) [103] or Spike Driven Synaptic Plasticity 
(SDSP) [30]. According to the STDP a  connection weight 
between t wo ne urons i ncreases when t he pre-synaptic 
neuron spikes be fore the p ostsynaptic one . Ot herwise, the 
weight decreases.     

Models of single neurons as well as computational SNN 
models, along with their respective applications, have been 
already developed [33, 68, 73, 7, 8, 12], including evolving 
connectionist systems and evolving spiking neural networks 

(eSNN) i n particular, where an  S NN l earns d ata 
incrementally by o ne-pass propagation of t he da ta vi a 
creating and merging spiking neurons [61, 115]. In [115] an 
eSNN is designed to capture features and to aggregate them 
into audio and visual perceptions for the purpose of person 
authentification. I t is based on f our levels of  f eed-forward 
connected layers of spiking neuronal maps, similarly to the 
way t he cortex works w hen l earning a nd r ecognising 
images o r c omplex i nput stimuli [ 92]. It i s a n S NN 
realization of some computational models of vision, such as 
the 5 -level H MAX m odel i nspired by  t he i nformation 
processes in the cortex [92].    

However, t hese m odels ar e designed for (static) o bject 
recognition ( e.g. a pi cture o f a cat), but  not  for moving 
object recognition (e.g. a cat jumping to catch a m ouse). If 
these models are to be used for SSTD, they will still process 
SSTD as  a s equence of s tatic f eature v ectors ex tracted i n 
single t ime f rames. A lthough an  e SNN acc umulates 
incoming i nformation c arried i n e ach c onsecutive f rame 
from a pronounced word or a video, through the increase of 
the membrane potential of output spike neurons, they do not 
learn complex spatio/spectro-temporal associations from the 
data. M ost of t hese m odels a re de terministic a nd do n ot 
allow to model complex stochastic SSTD. 

In [63, 10] a computational neuro-genetic model (CNGM) 
of a  s ingle n euron a nd S NN a re p resented t hat utilize 
information about how some proteins and genes a ffect the 
spiking a ctivities o f a  neuron, s uch a s fast excitation, f ast 
inhibition, s low e xcitation, a nd s low i nhibition. An 
important part of  a  C NGM is a  dy namic ge ne r egulatory 
network (GRN) m odel o f genes/proteins a nd t heir 
interaction over t ime that a ffect t he spiking activity o f t he 
neurons in the SNN. Depending on the task, the genes in a 
GRN can represent either biological genes and proteins (for 
biological a pplications) or s ome s ystem p arameters 
including probability pa rameters ( for e ngineering 
applications).  

Recently some new techniques have been developed that 
allow t he c reation of new t ypes o f c omputational m odels, 
e.g.: p robabilistic s piking ne uron m odels [66, 71]; 
probabilistic o ptimization o f f eatures a nd p arameters o f 
eSNN [97, 96]; reservoir computing [73, 108]; personalized 
modelling f rameworks [ 58, 59] . This pa per reviews 
methods a nd systems f or S STD t hat ut ilize t he a bove a nd 
some other contemporary SNN techniques along with their 
applications.  

 
2. Single Spiking Neuron Models 

 

2.1 A biological neuron 
 

A single biological neuron and the associated synapses is a 
complex i nformation pr ocessing m achine, t hat i nvolves 
short t erm i nformation pr ocessing, l ong t erm i nformation 
storage, and evolutionary information stored as genes in the 
nucleus of the neuron (Fig.2).   

2.2 Single neuron models 
Some o f t he-state-of-the-art models of  a  s piking ne uron 
include: e arly m odels b y H odgkin a nd Huxley [ 41] 1952 ; 
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Fig.2. A single biological neuron with the associated synapses is a 
complex information processing machine (from Wikipedia) 
 
 
more recent models by Maas, Gerstner, Kistler, Izhikevich 
and ot hers, e .g.: S pike R esponse M odels (SRM) [ 33, 6 8]; 
Integrate-and-Fire Model (IFM) [33, 68]; Izhikevich models 
[52-55], adaptive IFM, and others. 

The most popular f or b oth bi ological m odeling a nd 
engineering a pplications i s the I FM. The I FM ha s be en 
realised on software-hardware platforms for the exploration 
of patterns of activities in large scale SNN under d ifferent 
conditions and for different applications. Several large scale 
architectures of SNN u sing I FM ha ve be en de veloped for 
modeling b rain c ognitive f unctions a nd e ngineering 
applications. Fig. 3(a) and (b) illustrate the structure and the 
functionality o f t he L eaky I FM ( LIFM) respectively. T he 
neuronal p ost synaptic p otential ( PSP), a lso c alled 
membrane potential u(t), increases with every input spike at 
a time t multiplied to the synaptic efficacy (strength) until it 
reaches a t hreshold. After t hat, an  output s pike i s em itted 
and the membrane potential is reset to an initial s tate (e.g. 
0). Between spikes, the membrane potential leaks, which is 
defined by a parameter.    

An important part of a model of a neuron is the model of 
the s ynapses. Most o f t he n euronal m odels as sume s calar 
synaptic ef ficacy p arameters t hat ar e s ubject t o l earning, 
either on-line or off-line (batch mode). There are models of 
dynamics s ynapses (e.g. [ 67, 7 1, 7 2]), where t he s ynaptic 
efficacy depends on s ynaptic p arameters t hat ch ange over 
time, representing bot h long term memory (the final 
efficacy a fter l earning) and s hort t erm m emory – the 
changes o f t he   s ynaptic efficacy over a s horter t ime 
period not only during learning, but during recall as well.    
One generalization of the LIFM and the dynamic synaptic 
models is the probabilistic model of a neuron [66] as shown 
in f ig.4a, which is a lso a  biologically p lausible model [45, 
68, 71]. The state of a spiking neuron ni is described by the 
sum PSP i(t) o f the i nputs r eceived f rom al l m  s ynapses. 
When the PSPi(t) reaches a firing threshold ϑi(t), neuron ni 
fires, i .e. i t emits a spike. Connection weights ( wj,i, 
j=1,2,...,m) as sociated w ith the s ynapses are 
determined during the learning phase using a learning rule. 
In a ddition to t he c onnection weights w j,i(t), t he 
probabilistic spiking neuron model has the following three 
probabilistic parameters:    

 
(a)

 
(b) 

Fig.3. (a) The structure of the LIFM. (b) functionality of the LIFM 

 
• A probability pcj,i(t) that a spike emitted by neuron nj will 

reach n euron n i at a  t ime m oment t  through t he 
connection between n j and n i. If  pcj,i(t)=0, no connection 
and no spike propagation exist between neurons nj and ni.  
If p cj,i(t) = 1  the probability for propagation of  spikes i s 
100%.    

• A p robability psj,i(t) for  the synapse s j,i to contribute to 
the PSPi(t) after it has received a spike from neuron nj.  

• A probability pi(t) for the neuron ni to emit an output spike 
at time t once the total PSPi (t) has reached a value above 
the PSP threshold (a noisy threshold).  

 
The t otal P SPi(t) o f the p robabilistic spiking ne uron n i is 
now calculated using the following formula [66]: 

PSPi(t) = ∑  ( ∑ejf1(pcj,i(t-p))f2(psj,i(t-p))wj,i(t)+η(t-t0))  (2)  
            p=t0,.,t   j=1,..,m         

where ej is 1, if a spike has been emitted from neuron nj, and 
0 otherwise; f 1(pcj,i(t)) i s 1 w ith a  p robability p cji(t), and 0  
otherwise;  f 2(psj,i(t)) i s 1  w ith a  p robability p sj,i(t), and 0  
otherwise; t0 is the time of the last spike emitted by ni; η(t-t0) 
is a n a dditional t erm r epresenting decay i n t he P SPi. As a  
special case, when all or some of the probability parameters 
are f ixed t o “ 1”, t he a bove pr obabilistic m odel wi ll be  
simplified and will resemble the well known IFM. A similar 
formula w ill b e used w hen a l eaky I FM i s u sed as  a  
fundamental model, w here a t ime d ecay p arameter i s 
introduced.   

It h as be en de monstrated that S NN that u tilises the 
probabilistic neuronal m odel c an l earn better SSTD t han 
traditional S NN w ith s imple I FM, e specially i n a  n osy 
environment [98, 83]. The effect of each of the above three 
probabilistic parameters on the ability of a SNN to process  
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(a)

 
(b) 

Fig.4 (a) A simple probabilistic spiking neuron model (from [66]); 
(b) Different types of noisy thresholds have different effects on the 
output spikes (from [99, 98]).    

 
noisy a nd s tochastic i nformation was s tudied i n [ 98]. F ig. 
4(b) presents the effect of different types of nosy thresholds 
on the neuronal spiking activity. 
 
2.3 A neurogenetic model of a neuron 
A neurogenetic model of  a neuron is proposed in [63] and 
studied i n [ 10].  I t ut ilises information a bout how s ome 
proteins and genes affect the spiking activities of  a neuron 
such as fast excitation, fast inhibition, slow excitation, and 
slow i nhibition. T able 1  s hows s ome of  t he proteins i n a  
neuron and their relation to different spiking activities. For 
a r eal cas e ap plication, a part f rom t he GABAB r eceptor 
some other metabotropic and other receptors could be also 
included. T his i nformation i s us ed t o calculate t he 
contribution of each of the different synapses, connected to 
a neuron ni, to its post synaptic potential PSPi(t):   



















−−










−= synapse

rise
synapse
decay

synapsesynapse
ij

ssAs
ττ

ε expexp)(
    (3) 

                   

(3) 

where synapse
risedecay /τ  are time constants representing the rise and 

fall of an individual synaptic PSP; A is the PSP's amplitude; 
εij

synapse represents t he t ype o f a ctivity of t he synapse 
between neuron j a nd ne uron i  that can  be m easured a nd 
modelled s eparately f or a  fast e xcitation, f ast i nhibition, 
slow e xcitation, a nd s low inhibition (it i s a ffected by 
different genes/proteins). External inputs can also be added 
to model ba ckground n oise, ba ckground oscillations o r 
environmental information.  

An important part of the model is a dynamic gene/protein 
regulatory ne twork ( GRN) m odel o f t he dy namic 
interactions between genes/proteins over time that affect the 
spiking activity of the neuron. Although biologically 
plausible, a GRN model is only a highly simplified general 
model that does not necessarily take into account the exact 
chemical an d m olecular i nteractions. A GRN m odel i s 
defined by:  
(a) a set of genes/proteins, G= (g1,g2,…, gk);  
(b) an i nitial s tate o f t he l evel o f e xpression o f t he 

genes/proteins G(t=0); 
(c) an i nitial s tate o f a  c onnection m atrix L  =  ( L11,…, 

Lkk), where each element Lij defines the known level 
of interaction (if  any) between genes/proteins gj and 
gi;   

(d) activation functions fi  for each gene/protein gi from 
G. T his function defines the gene/protein  
expression value a t t ime ( t+1) depending o n t he 
current values G (t), L (t) a nd s ome e xternal 
information E(t):  

 gi(t+1)= fi (G(t), L(t), E(t))           (4) 
 

3. Learning and Memory in a Spiking Neuron 
3.1 General classification  
A learning process has an effect on the synaptic efficacy of 
the s ynapses connected t o a s piking n euron a nd on the  
information that is memorized. Memory can be: 

- Short-term, r epresented a s a c hanging P SP a nd 
temporarily changing synaptic efficacy; 

- Long-term, re presented a s a  s table e stablishment 
of the synaptic efficacy; 

- Genetic (evolutionary), represented as a ch ange in 
the genetic code and the gene/ protein expression 
level as  a result o f the above short-term and long 
term memory changes and evolutionary processes. 

Learning in SNN can be: 
- Unsupervised -  there i s no desired o utput s ignal 

provided; 
-  Supervised – a desired output signal is provided; 
- Semi-supervised. 

Different tasks can be learned by a neuron, e.g: 
      -   Classification; 
      -   Input-output spike pattern association.   

Several bi ologically pl ausible l earning rules ha ve be en 
introduced so far, depending on the type of the information 
presentation: 

- Rate-order l earning, t hat i s based o n t he average 
spiking activity of a neuron over time [18, 34, 43];   

- Temporal l earning, t hat i s b ased on precise s pike 
times [44, 104, 106, 13, 42];  

- Rank-order l earning, t hat t akes i nto a ccount t he 
order of spikes across all synapses connected to a 
neuron [105, 106].   

Rate-order i nformation representation is t ypical f or 
cognitive information processing [18].   
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Table 1. Neuronal action potential parameters and related proteins 
and i on channels i n the c omputational ne uro-genetic m odel of  a 
spiking ne uron: A MPAR - (amino- methylisoxazole- propionic 
acid) AMP A r eceptor; NMDR  - (N-methyl-D-aspartate a cid) 
NMDA r eceptor;  GAB AAR - (gamma-aminobutyric a cid) 
GABAA receptor, GABABR - GABAB receptor; SCN  -  sodium 
voltage-gated c hannel, K CN - kalium (potassium) vol tage-gated 
channel; CLC - chloride channel (from Benuskova and Kasabov, 
2007) 

 
 

Temporal spike learning is observed in the auditory [93], 
the visual [ 11] a nd t he m otor c ontrol i nformation 
processing of the brain [13, 90]. Its use in neuro-prosthetics 
is e ssential, a long w ith a pplications for a  f ast, real-time 
recognition a nd c ontrol of s equence of r elated p rocesses 
[14].  

Temporal coding accounts for the precise time of spikes 
and has been utilised in several learning rules, most popular 
being S pike-Time D ependent P lasticity ( STDP) [ 103, 69 ] 
and S DSP [ 30, 14]. T emporal c oding of inf ormation i n 
SNN m akes use o f t he e xact t ime of  s pikes ( e.g. i n 
milliseconds). Every spike matters and its time matters too.  

3.2 The STDP learning rule 
The STDP learning rule uses Hebbian plasticity [39] in the 
form of long-term potentiation (LTP) and depression (LTD) 
[103, 69]. Efficacy of synapses is strengthened or weakened 
based on  the t iming of  pos t-synaptic a ction p otential i n 
relation t o t he p re-synaptic s pike (example i s gi ven i n 
Fig.5(a)).  I f t he difference i n t he s pike t ime b etween t he 
pre-synaptic and po st-synaptic ne urons i s ne gative ( pre-
synaptic neuron s pikes first) t han t he c onnection weight 
between the two neurons increases, otherwise i t decreases. 
Through STDP, c onnected neurons l earn c onsecutive 
temporal a ssociations f rom d ata. P re-synaptic a ctivity t hat 
precedes p ost-synaptic f iring c an i nduce l ong-term 
potentiation ( LTP), r eversing t his t emporal or der c auses 
long-term depression (LTD).  

3.3 Spike Driven Synaptic Plasticity (SDSP)  
The SDSP is an unsupervised learning method [30, 14] , a  
modification of t he S TDP, t hat directs t he c hange of t he 
synaptic p lasticity Vw0 of a  synapse w 0 depending o n the 
time of  s piking o f t he pre-synaptic ne uron a nd t he p ost-
synaptic neuron. Vw0 increases o r decreases, depending on 
the relative timing of the pre- and post-synaptic spikes.  

If a  p re-synaptic s pike ar rives at  t he s ynaptic t erminal 
before a  p ostsynaptic s pike within a  c ritical t ime w indow, 
the synaptic efficacy is increased (potentiation). If the post- 

 
(a) 

 
(b) 

Fig.5. (a) A n example of s ynaptic change in a S TDP l earning 
neuron [103]; (b) Rank-order learning neuron. .                        
 
 
synaptic spike is emitted just before the pre-synaptic spike, 
synaptic efficacy is decreased (depression). This change in 
synaptic efficacy can be expressed as: 

spk
p
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0   if tpre < tpost             (5)  

spk
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w t

C
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0  if tpost < tpre         (6) 

where spkt∆ is t he p re- and po st-synaptic s pike t ime 
window. 

The SDSP rule c an be used t o i mplement a  s upervised 
learning al gorithm, w hen a t eacher s ignal, that c opies t he 
desired output spiking s equence, i s entered a long with the 
training s pike pa ttern, but wi thout a ny c hange o f t he 
weights of the teacher input.     

The S DSP m odel i s i mplemented a s a n VLSI a nalogue 
chip [49]. The silicon synapses comprise bistability circuits 
for driving a  s ynaptic weight t o one o f t wo possible 
analogue va lues (either p otentiated or  depressed). T hese 
circuits drive the synaptic-weight voltage with a current that 
is superimposed on that generated by the STDP and which 
can be e ither positive or negative. I f, on short t ime scales, 
the synaptic weight is increased above a set threshold by the 
network activity via the STDP learning mechanism, the bi-
stability c ircuits generate a  constant weak positive current. 
In the absence of activity (and hence learning) this current 
will d rive t he w eight t oward i ts potentiated s tate. If t he 
STDP decreases t he s ynaptic we ight below t he t hreshold, 
the bi-stability circuits will generate a negative current that, 
in t he a bsence o f spiking a ctivity, w ill a ctively d rive t he 
weight t oward t he a nalogue value, e ncoding i ts de pressed 
state. The S TDP and b i-stability c ircuits f acilitate t he 
implementation of both long-term and short term memory.  

3.4 Rank-order learning  
The r ank-order l earning r ule us es im portant i nformation 
from the input spike trains – the rank of the first incoming  

Different types of action 
potential of a spiking neuron 
used as parameters for its 
computational model  

Related neurotransmitters and 
ion channels   

Fast excitation PSP AMPAR 
Slow excitation PSP NMDAR 
Fast inhibition PSP GABAAR 
Slow inhibition PSP 
Modulation of PSP 

GABABR 
mGluR 

Firing threshold Ion channels SCN, KCN, CLC 
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Fig.6. A s ingle LIF ne uron w ith s imple s ynapses c an be  t rained 
with t he S TDP uns upervised learning rul e t o di scriminate a 
repeating pattern of synchronised spikes on certain synapses from 
noise (from : T. M asquelier, R. G uyonneau a nd S . T horpe, 
PlosONE, Jan2008))  
 
 
spike on each synapse (Fig.5(b)). It establishes a priority of 
inputs (synapses) based on the order of the spike arrival on 
these s ynapses f or a  particular pattern, w hich i s a 
phenomenon o bserved i n biological s ystems a s well a s a n 
important i nformation processing c oncept f or s ome S TPR 
problems, such as computer vision and control [105, 106]. 
This l earning makes us e o f the e xtra i nformation o f s pike 
(event) order. It has several advantages when used in SNN, 
mainly: fast learning (as it uses the extra information of the 
order of the incoming spikes) and asynchronous data entry 
(synaptic i nputs a re a ccumulated i nto t he neuronal 
membrane potential in an asynchronous way). The learning 
is most appropriate for AER input data streams [23] as the 
events and their addresses are entered into the SNN ‘one by 
one’, in the order of their happening. 

The postsynaptic pot ential o f a  ne uron i at a  t ime t is 
calculated as: 

∑=
j

ij
jorder wtiPSP ,
)(mod),(           (7)  

where mod  is a  m odulation f actor; j is the  ind ex f or the  
incoming spike a t synapse j,i and wj,i is the corresponding 
synaptic weight; order(j) represents the order (the rank) of 
the spike a t the synapse j,i among a ll spikes arriving f rom 
all m synapses to the neuron i . The order(j) has a value 0 
for the first spike and increases according to the input spike 
order. An output spike is generated by neuron i  if the PSP 
(i,t) becomes higher than a threshold PSPTh (i). 

During t he t raining p rocess, f or e ach t raining i nput 
pattern (sample, example) t he connection weights are 
calculated based on the order of the incoming spikes [105]:  

      ∆wj,i (t)= mod order (j,i (t))             (8)  
 

3.5 Combined rank-order and temporal learning  
In [ 25] a  method f or a  combined rank-order and t emporal 
(e.g. SDSP) learning is proposed and tested on benchmark 
data. The initial value of a synaptic weight is set according 
to the rank-order learning based on the first incoming spike 
on t his synapse. T he w eight i s f urther modified to  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.7 (a) T he S PAN model [77]. (b) The W idrow-Hoff D elta 
learning rule applied to learn to associate an output spike sequence 
to an input STP  [77, 30] . (c) The use of  a  s ingle SPAN neuron 
for the classification of 5 STP belonging to 5 different classes [77]. 
(d) The accuracy of classification is rightly lower for the class 1 – 
spike at t he v ery beginning of  the i nput pa ttern a s t here i s n o 
sufficient input data).    
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(a) 

 
(b) 

Fig.8: (a) Multiple SPAN neurons [76]. (b) Multiple SDSP trained 
neurons [14]   
 
 

accommodate following spikes on this synapse with the use 
of a temporal learning rule – SDSP. 

4. STPR in a Single Neuron 
In c ontrast t o the distributed r epresentation t heory a nd t o 
the wi dely p opular vi ew t hat a  s ingle ne uron c annot do 
much, s ome r ecent r esults s howed t hat a  single neuronal 
model can be used for complex STPR.  

A single LIF ne uron, for example, with simple synapses 
can be trained with the STDP unsupervised learning rule to 
discriminate a  r epeating pattern of s ynchronised spikes on 
certain s ynapses f rom noi se ( from: T. M asquelier, R . 
Guyonneau and S. Thorpe, PlosONE, Jan2008) – see Fig. 6.  

Single neuron models ha ve been i ntroduced f or S TPR, 
such as: Temportron [38]; Chronotron [28]; ReSuMe [87]; 
SPAN [76, 77]. Each of them can learn to emit a spike or a 
spike pattern ( spike s equence) when a  c ertain S TP i s 
recognised. Some of them can be used to recognise multiple 
STP per class and multiple classes [87, 77, 76].   

'Fig.7(a)-(d) show a  S PAN ne uron a nd its u se fo r 
classification of 5 STP belonging to 5 different classes [77]. 
The accuracy of classification is rightly lower for the class 
1 ( the neuron e mits a  s pike a t t he ve ry b eginning o f t he 
input pattern) as there is no sufficient input data – Fig.7(d).) 
[77]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Evolving Spiking Neural Networks 
Despite t he ability of  a  s ingle ne uron t o conduct S TPR, a  
single neuron has a limited power and complex STPR tasks 
will require multiple spiking neurons.   

One approach is proposed in the evolving spiking neural 
networks (eSNN) framework  [61, 111]. eSNN evolve their 
structure a nd f unctionality i n a n on-line manner, f rom 
incoming information. For every new input pattern, a  new 
neuron is dynamically allocated and connected to the input 
neurons (feature ne urons). T he ne urons c onnections are 
established f or t he ne uron t o r ecognise t his pa ttern (or a 
similar one ) a s a  p ositive e xample. T he ne urons represent 
centres o f clusters in the space of the synaptic weights. In 
some implementations similar neurons are merged [61, 115]. 
That makes it possible to achieve a v ery fast learning in an 
eSNN ( only o ne pass may be n ecessary), b oth in a 
supervised and in an unsupervised mode.  

In [76] multiple SPAN neurons are evolved to achieve a 
better accuracy of s pike p attern g eneration t han a  s ingle 
SPAN – Fig.8(a).     

In [14] the SDSP model from [30] has been successfully 
used to t rain and test a  SNN for 293 character recognition 
(classes). E ach ch aracter ( a s tatic i mage) i s r epresented a s 
2000 bit feature vector, and each bit is transferred into spike 
rates, w ith 50Hz s pike b urst t o r epresent 1 a nd 0  H z t o 
represent 0. For each class, 20 different training patterns are 
used a nd 2 0 neurons a re a llocated, one for e ach p attern 
(altogether 5 860) ( Fig.8(b)) a nd t rained for s everal 
hundreds of iterations. 

A g eneral fr amework of e SNN for S TPR i s s hown i n 
Fig.9. It consists of the following blocks: 

- Input data encoding block; 
- Machine learning bl ock ( consisting of  several sub-

blocks); 
- Output block.     

In t he i nput block c ontinuous value i nput variables a re 
transformed into spikes. Different approaches can be used:   

- population rank coding [13] – Fig.10(a);   
- thresholding the i nput value, s o that a  s pike i s 
generated i f t he i nput value ( e.g. pixel i ntensity) i s 
above a threshold;  

- Address Event R epresentation ( AER) -  thresholding 
the di fference be tween two consecutive va lues o f the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.9. The eSNN framework for STPR (from: http://ncs.ethz.ch/projects/evospike) 
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(a) 

(b) 
Fig.10. (a) Population rank order coding of input information; (b) 
Address E vent Representations (A ER) of  t he input i nformation 
[23].    
 
 

same variable over t ime as i t i s in the a rtificial cochlea 
[107] and artificial retina devices [23] – Fig.10(b).  

The input information is entered either on-line (for on-line, 
real time applications) o r as a batch d ata. T he time of t he 
input da ta i s i n principal di fferent f rom t he i nternal S NN 
time of information processing.  

Long a nd c omplex S STD cannot be l earned i n s imple 
one-layer n euronal structures as  t he e xamples i n Fig.8(a) 
and ( b). T hey re quire neuronal ‘ buffers’ a s s hown in 
Fig.11(a). I n [ 82] a 3D  bu ffer w as us ed to store spatio-
temporal ‘chunks’ of input data before the data is classified. 
In this case the size of the chunk (both in space and time) is 
fixed by the size of the reservoir. There are no connections 
between t he l ayers i n t he buffer. S till, t he s ystem 
outperforms t raditional c lassification t echniques a s i t i s 
demonstrated on  sign language r ecognition, w here e SNN 
classifier was applied [61, 115].   

Reservoir c omputing [ 73, 108] ha s a lready be come a  
popular a pproach for S STD m odelling a nd pattern 
recognition.  I n t he c lassical v iew a  ‘reservoir’ i s a  
homogeneous, pa ssive 3D s tructure o f p robabilistically 
connected a nd f ixed ne urons t hat i n principle has n o 
learning and memory, neither it has an interpretable 
structure – fig.11b. A  reservoir, s uch a s a  L iquid State 
Machine (LSM) [ 73, 37], us ually us es small wo rld 
recurrent connections that do not facilitate capturing 
explicit spatial and temporal components from the SSTD in 
their relationship, which is the main goal of learning SSTD. 
Despite d ifficulties with the LSM reservoirs, i t was shown 
on several SSTD problems that they produce better results 
than us ing a simple classifier [ 95, 73, 99 , 60] . Some 
publications d emonstrated t hat p robabilistic ne urons a re 
suitable f or r eservoir c omputing e specially i n a  n oisy 
environment [98, 83].      

 
(a) 

 
(b) 

 
Fig.11. (a) An eSNN architecture for STPR using a reservoir; (b) 
The structure and connectivity of a reservoir 

In [81] an improved accuracy of LSM reservoir structure 
on pattern c lassification of hypothetical t asks i s a chieved 
when STDP learning was introduced into the reservoir. The 
learning is based on comparing the liquid states for different 
classes an d a djusting t he connection w eights s o t hat s ame 
class inputs have closer connection weights. The method is 
illustrated on the phone recognition task of the TIMIT data 
base phonemes – spectro-temporal problem. 13 MSCC are 
turned i nto t rains o f s pikes. T he m etric o f s eparation 
between liquid states r epresenting different classes is 
similar to the Fisher’s t-test [27]. 

After a presentation of input data example (or a ‘chink’ of 
data) the state of the SNN reservoir S(t) is evaluated in an 
output m odule a nd us ed f or c lassification p urposes ( both 
during training and recall phase). Different methods can be 
applied to capture this state:  
- Spike rate activity of all neurons at a certain time window: 

The state of the reservoir is represented as a v ector of n 
elements ( n i s t he number o f neurons i n t he reservoir), 
each e lement r epresenting the spiking probability of  the 
neuron within a  t ime w indow. Co nsecutive v ectors are 
passed to train/recall an output classifier.  

- Spike rate activity o f spatio-temporal c lusters C1, C2, … 
Ck of close  (both in space and time) neurons: The state 
SCi(t) of each cluster Ci is represented by a single number, 
reflecting o n t he s piking a ctivity of  t he neurons i n t he 
cluster in a defined time window (this is the internal SNN 
time, usually measured in ‘msec’). This is interpreted as 
the c urrent spiking probability o f t he c luster. The s tates 
of all clusters define the current reservoir state S(t). In the 
output function, t he c luster s tates SCi(t) are u sed 
differently for different tasks.  

- Continuous function r epresentation o f s pike t rains: In 
contrast to the above two methods that use spike rates to 
evaluate t he s piking a ctivity of  a  ne uron or a  ne uronal 
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Fig.12. A schematic diagram of a CNGM framework, consisting of: input encoding module; a SNN reservoir output function for SNN 
state e valuation; out put classifier; G RN (op tional m odule). T he fra mework can be  us ed t o c reate c oncrete m odels for  S TPR or da ta 
modelling (from [64]).  

cluster, here the train of spikes from each neuron within a 
time window, or a  neuronal cluster, i s t ransferred into a  
continuous value t emporal f unction using a  ke rnel (e.g. 
α-kernel). T hese f unctions can  be co mpared an d a 
continuous value error measured.  

 
In [95] a comparative analysis of the three methods above is 
presented on a case study of Brazilian sign language gesture 
recognition (see Fig.18) using a LSM as a reservoir.   

Different a daptive c lassifiers c an be e xplored for t he 
classification of t he r eservoir s tate i nto one o f t he output 
classes, i ncluding: s tatistical t echniques, e .g. regression 
techniques; MLP;  eSNN; n earest-neighbour te chniques; 
incremental LDA [85]. S tate v ector t ransformation, before 
classification can b e d one w ith t he use o f a daptive 
incremental t ransformation f unctions, s uch as  i ncremental 
PCA [84].      
       

6. Computational Neurogenetic Models 
(CNGM) 

Here, t he n eurogenetic model of  a  neuron [63, 1 0] i s 
utilized. A CNGM framework is shown in Fig.12 [64].   

The CNGM framework comprises a  set of methods and 
algorithms t hat s upport t he development o f c omputational 
models, each of them characterized by:  
- Two-tire, consisting of an eSNN at the higher level and a 

gene r egulatory ne twork (GRN) a t the lower l evel, each 
functioning a t a  d ifferent t ime-scale and co ntinuously 
interacting between each other;  

- Optional us e of pr obabilistic spiking ne urons, thus 
forming an epSNN; 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Parameters i n t he ep SNN m odel ar e d efined b y 
genes/proteins from the GRN; 

- Can capture in its internal representation both spatial and 
temporal characteristics from SSTD streams;  

- The structure and the functionality of the model evolve in 
time from incoming data; 

- Both unsupervised a nd s upervised l earning a lgorithms 
can be applied in an on-line or in a batch mode. 

- A concrete model would have a s pecific s tructure and a  
set of  a lgorithms de pending on t he problem a nd t he 
application conditions, e.g.: classification of SSTD; 
modelling of brain data.   

The framework f rom Fig.12 supports t he c reation of  a  
multi-modular integrated system, where di fferent modules, 
consisting of  d ifferent ne uronal typ es a nd ge netic 
parameters, r epresent different f unctions ( e.g.: vision; 
sensory information p rocessing; sound r ecognition; motor-
control) and the whole system works in an integrated mode.      

The ne urogenetic model from Fig.12 uses as  a m ain 
principle the a nalogy w ith biological facts a bout the 
relationship between spiking activity and gene/protein 
dynamics i n or der t o c ontrol t he l earning a nd s piking 
parameters i n a S NN when SSTD i s l earned. B iological 
support of this can be found in numerous publications (e.g. 
[10, 40, 117, 118]).  

The A llen Human Br ain A tlas ( www.brain-map.org) o f 
the A llen Institute for Br ain S cience 
(www.alleninstitute.org) has shown that at least 82% of the 
human ge nes a re e xpressed i n t he brain. F or 1000 
anatomical s ites o f t he b rains of t wo i ndividuals 100 m ln 
data p oints a re co llected t hat i ndicate gene ex pressions o f 
each of the genes and underlies the biochemistry of the sites.  
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Fig.13. A GRN interacting with a SNN reservoir of 1000 neurons. The GRN controls a single parameter, i.e. the τ parameter of all 1000 LIF 
neurons, over a period of five seconds. The top diagram shows the evolution of   τ. The response of the SNN is shown as a raster plot of 
spike activity.  A black point in this diagram indicates a spike of a specific neuron at a specific time in the simulation. The bottom diagram 
presents the evolution of the membrane potential of a single neuron from the network (green curve) along with its firing threshold ϑ (red 
curve). Output spikes of the neuron are indicated as black vertical lines in the same diagram (from [65]).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In [ 18] i t i s suggested t hat b oth t he firing r ate (rate 

coding) a nd s pike t iming a s s patiotemporal pa tterns (rank 
order a nd s patial  pattern c oding) play a  r ole i n fast a nd 
slow, dy namic a nd a daptive s ensorimotor r esponses, 
controlled by the cerebellar nuclei. Spatio-temporal patterns 
of population of Purkinji cells are shaped by activities in the 
molecular layer of interneurons.  In [40] it is demonstrated 
that t he t emporal s piking dy namics de pend on t he s patial 
structure of t he neural system (e .g. different for the  
hippocampus and the cerebellum). In the hippocampus the 
connections are scale free, e.g. there are hub neurons, while 
in t he c erebellum t he c onnections a re regular. T he s patial 
structure depends on genetic pre-determination a nd on the  
gene dynamics. Functional connectivity develops in parallel 
with s tructural connectivity during b rain maturation. A  
growth-elimination p rocess ( synapses a re cr eated a nd 
eliminated) d epend o n g ene expression [40], e.g. 
glutamatergic ne urons issued f rom the s ame progenitors 
tend t o wi re together a nd f orm e nsembles, a lso for t he 
cortical G ABAergic i nterneuron p opulation. Co nnections 
between e arly de veloped ne urons (mature ne tworks) a re 
more s table and reliable when t ransferring spikes t han the 
connections b etween n ewly created neurons (thus t he 
probability of  s pike t ransfer). Postsynaptic A MPA-type 
glutamate r eceptors ( AMPARs) m ediate m ost f ast 
excitatory synaptic t ransmissions and ar e c rucial for many 
aspects of b rain function, i ncluding l earning, memory a nd 
cognition [10, 31].  

It w as shown the d ramatic e ffect o f a ch ange of s ingle 
gene, that regulates the τ parameter of the neurons, on the 
spiking a ctivity o f t he w hole SNN of 1 000 ne urons – see 
Fig.13 [65].  

The spiking activity of a neuron may affect as a feedback 
the expressions o f ge nes [5]. As  pointed in [ 118] o n a 
longer t ime s cales of  m inutes a nd hou rs t he f unction of  
neurons m ay c ause t he c hanges of t he expression of 
hundreds of  g enes t ranscribed i nto mRNAs a nd a lso i n 
microRNAs, which makes the short-term, the long-term and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the genetic memories of a neuron linked together in a global 
memory of  t he ne uron a nd further - of the  w hole neural 
system. 

A major problem with the CNGM from fig.12 is how to 
optimize t he numerous pa rameters o f t he m odel. One 
solution could be  us ing evolutionary computation, such as 
PSO [75, 83] a nd t he r ecently pr oposed quantum i nspired 
evolutionary computation techniques [22, 97, 96]. The latter 
can deal with a v ery l arge d imensional space as  eac h 
quantum-bit chromosome represents the whole space, each 
point to certain probability. Such a lgorithms are faster and 
lead t o a  c lose s olution t o t he gl obal o ptimum in a  ve ry 
short time.  

In one a pproach i t m ay b e r easonable to u se s ame 
parameter values (same GRN) for all neurons in the SNN or 
for each of different types of neurons (cells) that will results 
in a significant reduction of the parameters to be optimized. 
This can be interpreted as ‘average’ parameter value for the 
neurons of the same type. This approach corresponds to the 
biological notion to us e one  va lue ( average) of  a 
gene/protein e xpression f or m illions o f c ells i n 
bioinformatics.   

Another a pproach t o define t he parameters o f t he 
probabilistic s piking ne urons, e specially whe n used i n 
biological s tudies, i s t o use p rior k nowledge a bout t he 
association of s piking pa rameters w ith r elevant 
genes/proteins ( neuro-transmitter, n euro-receptor, ion 
channel, n euro-modulator) a s described in [64]. 
Combination of the two approaches above is also possible.  
   

7. SNN Software and hardware 
implementations to support STPR 

Software a nd h ardware re alisations o f S NN a re a lready 
available to support various applications of SNN for STPR. 
Among the most popular software/hardware systems are [24, 
16, 29]: 

- jAER (http://jaer.wiki.sourceforge.net) [23]; 

http://jaer.wiki.sourceforge.net/�
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Fig.14. A hypothetical neuromorphic SNN application system 
(from http://ncs.ethz.ch) 
 

 
- Software simulators, such as Brian  [16], Nestor, 

NeMo [79],etc; 
- Silicon retina camera [23]; 
- Silicon cochlea [107]; 
- SNN h ardware r ealisation of LIFM an d S DSP 

[47-50]; 
- The S piNNaker hardware/software e nvironment 

[89, 116]; 
- FPGA implementations of SNN [56]; 
- The IBM LIF SNN chip, recently announced. 

Fig.14 shows a hypothetical engineering system using some 
of the above tools (from [47, 25]).            
 

8. Current and Future Applications of eSNN 
and CNGM for STPR  

Numerous a re t he a pplications of e SNN for STPR. He re 
only few of them are listed: 

- Moving object recognition (fig. 15) [23, 60]; 
- EEG data modelling and pattern recognition [70, 1, 51, 

21, 2 6, 99, 35, 3 6] d irected t o p ractical a pplications, 
such a s: BCI  [51], c lassification of  e pilepsy [ 35, 36, 
109] - (fig.16); 

- Robot c ontrol th rough E EG s ignals [ 86] ( fig.17) a nd 
robot navigation [80];  

- Sign la nguage gesture recognition ( e.g. t he Br azilian 
sign language – fig.18) [95]; 

- Risk of e vent e valuation, e .g. prognosis o f 
establishment of  i nvasive s pecies [ 97] – fig.19; s troke 
occurrence [6], etc.  

- Cognitive and emotional robotics [8, 64]; 
- Neuro-rehabilitation robots [110];   
- Modelling finite automata [17, 78]; 
- Knowledge discovery from SSTD [101]; 
- Neuro-genetic robotics [74];  
- Modelling the progression or the response to treatment 

of n eurodegenerative diseases, s uch as  Alzheimer’s 
Disease [94, 64] – fig.20. The analysis of  the obtained 
GRN model in this case could enable the discovery of 
unknown interactions between genes/proteins related to 
a b rain d isease progression and h ow these interactions 
can be modified to achieve a desirable effect. 

 
(a)                     (b) 

Fig.15.Moving object r ecognition w ith the us e of  A ER [23] . (a) 
Disparity map of a video sample; (b) Address event representation 
(AER) of the above video sample. 

 
Fig.16. EEG based BCI. 

 

 
Fig.17. Robot control and navigation 
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Fig.18. A single sample for each of t he 15 c lasses of t he LIngua 
BRAsileira d e Sinais (L IBRAS) - the offi cial Bra zilian s ign 
language  i s s hown. T he c olour i ndicates t he time fra me of a 
given d ata poi nt (bl ack/white corresponds t o earlier/later time 
points) [95]. 
 

 
Fig 19. Prognosis of the establishment of invasive species [97] 

 

 
- Modelling financial a nd e conomic pr oblems ( neuro-

economics) where at a ‘lower’ level the GRN represents 
the d ynamic i nteraction between t ime s eries v ariables 
(e.g. stock index values, exchange rates, unemployment, 
GDP, p rize o f o il), while t he ‘ higher’ l evel e pSNN 
states represents the state of the economy or the system 
under s tudy. The s tates can  b e f urther cl assified i nto 
pre-define c lasses ( e.g. buy, h old, s ell, i nvest, l ikely 
bankruptcy) [113];         

- Personalized m odelling, w hich i s c oncerned with t he 
creation of a  single model for an individual input data 
[58, 59, 62]. Here as an individual data a whole SSTD 
pattern is taken rather than a single vector.  
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Abstract 
Several selective attention m odels partly i nspired b y bi ological 
visual attention mechanism are introduced. The developed models 
consider not only binocular stereopsis to identify a final attention 
area s o t hat t he s ystem foc uses on t he c loser a rea as i n hum an 
binocular vision, but  a lso both the s tatic and dynamic features of 
an i nput s cene. In t he m odels, I s how t he e ffectiveness of 
considering the symmetry feature determined by a neural network 
and a n i ndependent component a nalysis (ICA ) fi lter, w hich are 
helpful to construct an obj ect pr eferable a ttention model. A lso, I 
explain a n affective s aliency map (SM) model including an 
affective computing process that skips an unwanted area and pays 
attention to a d esired area, w hich re flects t he human pre ference 
and r efusal i n s ubsequent vi sual s earch proc esses. In a ddition, I 
also c onsider a  ps ychological distance a s w ell a s t he po p-out 
property based on re lative s patial di stribution of t he pr imitive 
visual features. And, a  t ask specific top-down a ttention model to 
locate a  t arget o bject b ased on  i ts form  a nd c olor re presentation 
along with a  bo ttom-up a ttention ba sed on  re lativity of pr imitive 
visual fe atures a nd s ome memory modules. T he object form a nd 
color re presentation a nd m emory m odules h ave a n i ncremental 
learning m echanism t ogether w ith a prop er obj ect fe ature 
representation s cheme. T he pro posed m odel includes a G rowing 
Fuzzy Topology Adaptive Resonance Theory (GFTART) network 
which pl ays two important roles i n obj ect color and form bi ased 
attention. E xperiments s how t hat the propo sed m odels c an 
generate p lausible s can pa ths a nd s elective a ttention for n atural 
input scenes.  

Keywords: Selective attention, bottom-up attention, GFTART 

1. Introduction 
The visual s elective a ttention c an a llow humans t o pay 
attention t o a n i nteresting a rea o r a n object i n n atural o r 
cluttered scenes as well as to pr operly respond for various 
visual stimuli i n c omplex e nvironments. S uch a  s elective 
attention visual mechanism allows the human vision system 
to effectively process high complexity visual scene. 

Itti, K och, a nd N iebur ( 1998) i ntroduced a  br ain-like 
model i n order t o g enerate the bottom-up saliency m ap 
(SM). K oike a nd S aiki ( 2002) pr oposed t hat a  s tochastic 
winner t ake a ll ( WTA) e nables t he s aliency-based s earch 
model t o c hange s earch e fficiency by  va rying t he r elative 
saliency, due to stochastic attention shifts. Kadir and Brady 
(2001) proposed a n a ttention m odel in tegrating saliency, 
scale s election a nd a  c ontent de scription, thus  c ontrasting 
with m any ot her a pproaches. R amström a nd C hristensen 

(2002) cal culated s aliency w ith r espect t o a g iven task by 
u s i n g  a 
 

 

 

 

 

 

 
(2002) calculated s aliency with r espect t o a g iven t ask by 
using a  m ulti-scale p yramid an d m ultiple cu es. Their 
saliency computations were based on game theory concepts.  
Rajan et al . ( 2009) presented a robust s elective at tention 
model based on the spatial distribution of color components 
and l ocal a nd gl obal be havior of di fferent or ientations i n 
images. Wrede et  al . ( 2010) proposed a random cen ter 
surround bottom up vi sual a ttention model by ut ilizing the 
stimulus bias techniques such as the s imilarity and biasing 
function. Ciu et al. (2009), Hou and Zhang (2007) 
developed a  n ew t ype of b ottom-up a ttention m odel b y 
utilizing t he F ourier p hase s pectrum. B ased on the 
psychological understanding, W ang a nd Li ( 2008) 
presented a  saliency detection model by combining 
localization of v isual pop-outs u sing the spectrum residual 
model ( Hou a nd Z hang, 2007) a nd c oherence propagation 
strategy based on Gestalt principles. Frintrop, R ome, 
Nüchter, a nd Surmann (2005) proposed a  bi modal l aser-
based a ttention s ystem t hat c onsiders both s tatic f eatures 
including c olor a nd depth f or generating p roper a ttention. 
Fernández-Caballero, L ópez, and Saiz-Valverde ( 2008) 
developed a dynamic stereoscopic selective visual attention 
model that integrates motion and depth in order to choose 
the attention ar ea. Maki, No rdlund, a nd Eklundh ( 2000) 
proposed an attention model integrating image flow, stereo 
disparity a nd motion for a ttentional s cene s egmentation. 
Ouerhani a nd H ügli ( 2000) p roposed a  visual a ttention 
model t hat c onsiders de pth a s w ell as s tatic f eatures. 
Belardinelli and Pirri ( 2006) d eveloped a biologically 
plausible robot attention model, which also considers depth 
for attention.  

Carmi a nd I tti ( 2006) pr oposed a n a ttention m odel t hat 
considers seven dynamic features in MTV-style video clips, 
and also proposed an integrated attention scheme to detect 
an o bject by  combining b ottom-up S M with t op-down 
attention ba sed on t he s ignal-to-noise r atio ( Navalpakkam 
& Itti, 2006). A s w ell, W alther et a l. (2005) pr oposed a n 
object preferred attention scheme that considers the bottom-
up S M r esults a s bi ased w eights f or t op-down o bject-
perception. Li and Itti (2011) represented a visual attention 
model t o s olve t he t arget detection p roblem i n s atellite 
images by combining biologically-inspired features such as 
saliency and gist features. Guo and Zhang (2010) extended 
their pr evious a pproach ( Hou a nd Z hang, 2 007) c alled 
spectral r esidual ( SR) to cal culate the spatiotemporal  

Regular Paper 
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Figure 1. Overall visual pathways from the retina to the secondary visual cortex. 

saliency map of an image by its quaternion representation.  
This paper p resent s everal t ypes o f s elective a ttention 

models t hat generate a n a ttention a rea by c onsidering 
psychological d istance o f v isual s timuli. T he p revious 
stereo S M m odels proposed by  L ee e t a l. ( 2008) were 
modified and enhanced through learning the characteristics 
of f amiliar a nd unfamiliar o bjects a nd g enerating a 
preference a nd r efusal b ias s ignals r eflecting the 
psychological distances to change the scan path obtained by 
conventional stereo S M m odels ( Jeong, B an, a nd L ee, 
2008). Al so, a  hum an s can path was m easured to ve rify 
whether t he proposed S M m odel successfully reflects 
human’s psychological distance for familiar and unfamiliar 
objects according to spatial distance from human subjects to 
attention candidates (Ban et al., 2011). 

To e ffectively pr ocess a nd understand c omplex vi sual 
scenes, a top-down selective attention model with efficient 
biasing mechanism to localize a candidate target object area 
is essential. I n o rder t o de velop s uch a  top-down obj ect 
biased a ttention m odel, we  combine a  b ottom-up s aliency 
map ( SM) model t hat utilizes b iologically motivated 
primitive v isual f eatures with a  t op-down a ttention model 
that can  e fficiently m emorize t he o bject form an d c olor 
characteristics, and generates a bias signal corresponding to 
the can didate l ocal ar ea co ntaining d esired object 
characteristics. In addition, the proposed system comprises 
of a n i ncremental o bject representation a nd m emorization 
model w ith a  gr owing fuzzy t opology a daptive resonant 
theory (GFTART) network for building the object color and 
form feature clusters, in addition to the primitive knowledge 
building a nd i nference (Kim e t a l., 2011). T he GFTART 
network i s a  hybrid m odel by  c ombining a n A RT ba sed 
network a nd a  gr owing c ell s tructure ( GCS) ( Grossberg, 
1987, F ritzke, 1 994, Kim e t a l., 2 011). I n t he GFTART 
network, e ach n ode o f t he F2 l ayer i n t he c onventional 
fuzzy A RT network i s r eplaced w ith a  GCS unit, t hereby 
increasing t he s tability, w hile maintaining p lasticity, a nd 
preserving t he t opology s tructures. The i nclusion o f t he 

GCS u nit a llows t he m odel t o d ynamically h andle t he 
incremental input features considering topological 
information ( Kim e t a l., 2011). I  propose a new integrated 
visual s elective a ttention model t hat can generate an 
attention area by considering the psychological distance as 
well a s t op-down bias s ignals i n t he c ourse of  GFTART 
networks fo r continuous input scenes. It also includes both 
the human’s affective computing process and stereo vision 
capability in selective attention.  

In Section 2,  we pr esent the biological b ackground on  
visual information processing. Sections 3 & 4, describes the 
proposed integrated selective attention model in d etail. The 
experimental r esults of t he pr oposed integrated selective 
attention m odel a re p resented in Section 5. Discussion and 
conclusions follow in Section 6. 

2. Biological Background on Visual 
Information Processing 

Fig. 1 shows the visual pathway from the retina to the V1 in 
brain. When t he r ods and cones cel ls in r etina ar e ex cited, 
signals a re t ransmitted t hrough s uccessive neurons i n t he 
retina i tself a nd f inally i nto t he o ptic nerve fibers a nd 
cerebral cortex (Guyton 1991, Goldstein 1995, Kuffler 1984, 
Majani 1984, Bear 2001). The various visual stimuli on the 
visual r eceptors ( or r etina) are transmitted t o the v isual 
cortex through ganglion cells and the LGN. As shown in Fig. 
1, there are three different types of retinal ganglion cells, W, 
X, and Y cells and each of these serves a different function 
(Guyton 19 91, M ajani 1984 ). T hose pr eprocessed s ignal 
transmitted t o t he L GN t hrough t he ganglion c ell, a nd t he 
on-set and of f-surround mechanism of  the L GN a nd the 
visual c ortex i ntensifies the phe nomena of  oppone ncy 
(Guyton 1991, M ajani 19 84). T he L GN ha s a  s ix-layered 
structure, w hich s erves as a r elay station f or c onveying 
visual i nformation f rom the r etina t o t he v isual c ortex by 
way of the geniculocalcarine tract (Guyton 1991). This relay 
function is very accurate, so much so that there is an exact 
point-to-point t ransmission w ith a  high d egree o f spatial  
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Figure 2. The visual pathway for visual environment perception. 

 

fidelity all t he w ay f rom t he r etina t o t he v isual c ortex. 
Finally, some detail features sensed by X-cells in the retina 
are s lowly t ransferred to a higher level b rain area from the 
LGN-parvo c ells t o t he V4 a nd t he i nferior-temporal ar ea 
(IT) t hrough t he V1 -4cβ, which i s r elated t o t he v entral 
pathway (Guyton, 1991). In contrast, some rapidly changing 
visual information sensed by Y-cells in the retina is rapidly 
transferred fr om L GN-magno c ells t o t he middle t emporal 
area (MT) and medial superior temporal area (MST) through 
the V 1-4cα, w hich i s r elated t o t he v isual dorsal p athway 
(Bear e t a l., 200 1). I n o rder t o de velop a  plausible vi sual 
selective at tention model, w e co nsider b oth o bject r elated 
information such as color and shape in the ventral pathway 
and motion information used in the dorsal pathway. 

Fig. 2  s hows the r elation b etween v isual p athway an d 
proposed c omputational model t hat is r elated w ith vi sual 
environment pe rception. According t o u nderstanding t he 
roles of brain organs that are related with visual environment 
perception, t he vi sual pa thway f rom t he r etina t o t he V1  
mainly wor ks for bottom-up vi sual pr ocessing, and the V4 
and the IT area focus on top-down visual processing such as 
object pe rception. T he hi ppocampus a nd t he hy pothalamus 
in t he l imbic s ystem pr ovide no velty de tection a nd reflect 
top-down preference, r espectively. The lateral-intra parietal 
cortex ( LIP) works a s a n attention c ontroller or  c enter. 
Actually, the prefrontal cortex (PFC) plays a very important 
function in hi gh-level p erception s uch a s kno wledge 
representation, r easoning a nd pl anning. Each pa rt wi ll be  
described in detail in following sections. 

3. Bottom-up visual attention model 
3.1 Static bottom-up saliency map model 
The hum an vi sual s ystem can f ocus on m ore i nformative 
areas in an input scene via visual stimuli. From a bottom-up 
processing point of view, more informative areas in an input 
scene can  be c onsidered as  ‘ pop-out’ ar eas. T he “p op-out” 
areas ar e p laces w here r elative s aliency, co mpared w ith i ts 
surrounding a rea, i s more ba sed upon pr imitive i nput 
features such as brightness, odd color, and etc. 

Fig. 3 shows the bot tom-up pr ocessing f or selective 
attention r eflecting s imple bi ological vi sual pa thway of 
human b rain t o d ecide salient ar eas. Based on t he 
Treisman’s fe ature i ntegration t heory ( Treisman &  G elde, 
1980), Itti and Koch used three basis feature maps: intensity, 
orientation a nd c olor i nformation ( Itti et a l., 1998) . 
Extending Itti and Koch’s SM model, I previously proposed 
SM models which include a symmetry feature map based on 
the generalized 

 
Figure 3. Static bottom-up saliency map model (I: intensity image, 
E:edge i mage, RG: r ed-green opponent coding image, BY : b lue-
yellow oppon ent c oding image, CS D & N : c enter-surround 
difference a nd norm alization, : int ensity F M, : or ientation 
FM, : s ymmetry F M, : c olor F M, ICA : i ndependent 
component analysis, SM: saliency map). 
 
symmetry t ransformation (GS T) a lgorithm a nd a n 
independent component analysis (ICA) filter to integrate the 
feature i nformation (P ark e t a l., 2 002). Through i ntensive 
computer e xperiments, I  i nvestigate t he im portance of t he 
proposed s ymmetry f eature map a nd t he I CA f ilter in 
constructing an o bject p referable at tention model. I  al so 
incorporate t he ne ural ne twork a pproach of  F ukushima 
(Fukushima, 2005) t o construct t he symmetry f eature map, 
which i s m ore bi ologically pl ausible a nd t akes l ess 
computation than the conventional GST a lgorithm ( Park et  
al., 200 2). Symmetrical i nformation i s a lso a n i mportant 
feature to determine the salient object, which is related with 
the f unction of LGN and primary vi sual cortex ( Li, 2001). 
Symmetry information is very important in the context free 
search p roblems (Reisfeld et al., 1995). In order to 
implement an  o bject p referable at tention m odel, we 
emphasize using a s ymmetry feature map because an object 
with arbitrary shape contains symmetry information, and our 
visual pathway also includes a s pecific function to detect a 
shape in an object (Fukushima, 2005). In order to consider 
symmetry information in our SM model, I modified 
Fukushima’s n eural ne twork t o de scribe a  s ymmetry a xis 
(Fukushima, 200 5). Fig. 3 s hows t he s tatic bot tom-up S M 
model. I n t he c ourse of c omputing t he orientation f eature 
map, we use 6 different scale images (a Gaussian pyramid) 
and i mplement t he on -center and of f-surround f unctions 
using the center surround and difference with normalization 
(CSD & N) (Itti et al., 1998; Park et al., 2002). 

As s hown i n Fig. 4,  t he o rientation i nformation i n t hree 
successive scale images is used for obtaining the symmetry 
axis f rom F ukushima’s ne ural ne twork ( Fukushima, 200 5). 
By a pplying t he c enter s urround difference a nd 
normalization (CSD&N) to the symmetry axes ex tracted in 
four different scales, we can obtain a symmetry feature map. 
This procedure mimics the higher-order analysis mechanism 
of c omplex c ells a nd hy per-complex c ells in t he pos terior 
visual c ortex a rea, be yond t he or ientation-selective s imple 
cells i n the V 1. Using C SD &  N i n G aussian py ramid 
images ( Itti et  al . 1 998), we can  co nstruct intensity ( ), 
color ( ), and orientation ( ) feature maps as well as the 
symmetry feature map ( ) (Fukushima. 2005, Jeong et al., 
2008 ). 

Based o n t he Barlow’s hy pothesis that h uman visual 
cortical f eature d etectors m ight b e t he en d r esult o f a  
redundancy reduction p rocess (Barlow &  T olhurst, 199 2), 
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Figure 4. Symmetry feature map generation process. 

and S ejnowski’s results s howing t hat i ndependent 
component a nalysis ( ICA) i s t he best a lternative t o r educe 
redundancy (Bell & Sejnowski, 1997), t he four co nstructed 
feature maps ( , , , and ) are then integrated by an 
ICA a lgorithm ba sed o n m aximization of  entropy (Bell &  
Sejnowski, 1997). 

Fig. 5 shows the procedure for computing the SM. In Fig. 
5, S(x,y) is obt ained by  t he s ummation of  the c onvolution 
between t he r-th c hannel of  i nput i mage(Ir) a nd t he i-th 
filters (IC sri) o btained b y t he I CA l earning ( Bell &  
Sejnowski, 1997). A static SM is obtained by Eq. (1). 

 
(1) 

Since we obtained the independent f ilters by ICA learning, 
the convolution result shown in Eq. (1) can be regarded as a 
measure for the relative amount of  visual information. The 
LIP pl ays a  r ole i n pr oviding a  r etinotopic s patio-feature 
map that is used to control the spatial focus of attention and 
fixation, which is able to integrate feature information in its 
spatial map (Lanyon & Denham, 2004). As an integrator of 
spatial and feature information, the LIP provides the 
inhibition of r eturn (IOR) m echanism required he re to 
prevent the scan path from returning to previously inspected 
sites (Lanyon & Denham, 2004). 

 
Figure 5. Saliency map generation process using ICA filter. 

3.2 Scale saliency 
The l ocalized s alient ar ea, w hich i s o btained f rom t he 
bottom-up s aliency m ap m odel, h as s uitable s cale/size b y 
considering an entropy maximization approach. The size of 
salient area was adapted to select a proper scale of the salient 
area b y using t he s aliency map. The s cale s election 
algorithm is based upon Kadir’s approach (Kadir & Brady, 
2001). Fig. 2  shows that pr oposed model s electively 
localizes the salient area in the input scene and in addition, it 

can d ecide t he p roper s cale of t he s alient area. F or each  
salient location, the proposed model chooses those scales at 
which t he e ntropy i s a t it s maximum, or  ha s pe aked, a nd 
then the entropy value is weighted by some measure of self-
dissimilarity in t he s cale-space o f t he s aliency map. T he 
most a ppropriate s cale f or each s alient a rea, cen tered at 
location x, is obtained by Eq. (2): 

 (2) 
where D is t he s et o f a ll descriptor v alues,  is 
entropy a s de fined by  E q. ( 3) a nd  is t he i nter-
scale measure as defined by Eq. (4): 

 
(3) 

 
(4) 

where  is t he probability mass f unction for s cale s, 
position x, and the descriptor value d that takes on values in 
D. T he p robability mass f unction  is obt ained f rom 
the histogram of the pixel values of the salient area centered 
at the location x with size s in the saliency map. As shown in 
Fig. 6, the proposed scale decision model can select suitable 
scale for the face (Kadir & Brady, 2001, Park et al., 2002). 

Figure 6. Scale decision in saliency map. 

3.3 Dynamic bottom-up saliency map model 
The h uman vi sual s ystem s equentially i nterprets d ynamic 
input s cenes a s w ell a s s till i nput i mages. A  c onventional 
bottom-up SM model, however, considers only static visual 
features in single frame. Most of selective attention models, 
including o ur previous m odel ( Park, An,  a nd L ee, 2002), 
consider o nly s tatic s cenes. Humans, h owever, can  d ecide 
the constituents an interesting area within a dynamic scene, 
as w ell as  s tatic i mages. T he d ynamic S M model i s b ased 
upon t he a nalysis of  s uccessive s tatic S Ms. T he entropy 
maximization is considered to analyze the dynamics of  the 
successive s tatic S Ms, w hich i s an  ex tension o f Kadir’s 
approach ( Kadir & Brady, 2 001), s ince t he d ynamic S M 
model c onsiders t ime-varying p roperties as  w ell as  s patial 
features. T he selective at tention m odel i s the f irst s uch a 
model to ha ndle dy namic i nput s cenes. F ig. 7 s hows t he 
procedure adopted to acquire a final SM by integrating both 
of t he s tatic S M a nd t he dy namic S M f rom na tural i nput 
images. ( Jeong e t a l., 2008,  F ernández-Caballero e t al., 
2008). 

The entropy value at each pixel represents a fluctuation of 
visual information a ccording t o tim e, through w hich a  
dynamic S M i s g enerated. Finally, t he a ttention m odel 
decides the salient areas based upon the dynamic bottom-up 
SM m odel a s s hown i n F ig. 7,  w hich i s g enerated by  t he 
integration of the static SM and the dynamic SM. Therefore, 
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Figure 7. The proposed dynamic bottom-up saliency map model. 
 

 
Figure 8. Motion analysis model based on dynamic saliency map 

the proposed dynamic bottom-up attention model can 
selectively decide an attention area by considering not only 
static saliency, but also the feature information of dynamics, 
which are obtained from consecutive input scenes. 

3.4 Motion analysis based on the dynamic saliency 
map model 
Fig. 8 s hows a  proposed motion a nalysis model whi ch 
integrates the dynamic SM with the motion analysis model 
as pr oposed b y F ukushima ( 2008). T he model is pa rtly 
inspired by the roles of the visual pathway in the brain, from 
the r etina t o t he M T a nd t he M ST t hrough t he L GN, by 
means of  t he V1 a nd t he V 2, i ncluding t he l ateral intra-
parietal cortex (LIP).  

As shown in Fig. 8, motion analysis networks are related 
to rotation, expansion, contraction and planar motion for the 
selected ar ea obtained from t he d ynamic a nd s tatic S M 
models. The model analyzes the motion within a salient area 
obtained by t he S M m odel. I n t he F ukushima’s ne ural 
network, MT cells extract the absolute and relative velocities 
(MTabs-cells a nd M Trel-cells), a nd M ST c ells e xtract o ptic 
flow i n a  l arge vi sual f ield. T he p roposed model c an 
automatically select the size of a receptive field at each cell 
using t he f actors, t aken f rom F ukushima’s ne ural ne twork 
(Fukushima, 2008). The relative velocity is then extracted by 
using orientation and local velocity information as proposed 
by F ukushima ( 2008). M Tabs-cells e xtract a bsolute-velocity 
stimuli. T he M Tabs-cells c onsist o f t wo s ub-layers, n amely 
excitation and inhibition cells. Only the receptive-field s ize 
of an inhibition cell is larger than that of an excitation cell. 
MTrel-cells e xtract r elative v elocity o f t he s timuli b y 
receiving antagonistic signals from excitation and inhibition 
cells of MTabs-cells. MTabs-cells integrate responses of many 

MTrel-cells by s ummation a nd t hen e xtract t he c ounter-
clockwise r otation, c lockwise r otation, e xpansion a nd 
contraction o f opt ic f low ( Jeong e t a l., 2 008, F ukushima. 
2008). 

 
3.5 Stereo saliency map model 
Based on t he single eye alignment hypothesis (Thorn et al., 
1994), Lee et al. developed an active vision system that can 
control t wo cameras b y partly mimicking a v ergence 
mechanism to focus two eyes at the same area in the human 
vision sy stem. Th is st ereo vision s ystem u sed t he s tatic 
selective a ttention m odel t o i mplement a n a ctive v ision 
system for vergence control (Choi et al., 2006). I use depth 
information f rom di sparities of  m ost s alient r egions i n l eft 
and right cameras to construct the stereo SM, which can then 
support pop-outs f or c loser objects. I n the model, s elective 
attention regions in each camera are obtained from static and 
dynamic saliency and are then used for selecting a dominant 
landmark. C omparing t he maximum salient va lues within 
selective attention regions in the two camera images, we can 
adaptively d ecide t he ca mera w ith l arger s alient v alue a s 
master eye. After successfully localizing the co rresponding 
landmarks on both l eft a nd right im ages with master a nd 
slave eyes, we are ab le to get depth information by  s imple 
triangulation. Fig. 9  s hows a s tereo s aliency map model 
including the bot tom-up S M pr ocess a nd depth pe rception 
(Jeong et al., 2008). 

 

Figure 9. Stereo saliency map model including the bottom-up SM 
process and depth perception. 

The stereo SM uses the depth information specifically, in 
which the distance between the camera and a focused region 
is u sed as  a  ch aracteristic f eature i n deciding s aliency 
weights. The stereo SM is obtained by Eq. (5):  

 
(5) 

where v denotes a pixel in the salient area, and sc(v) and sp(v) 
are the current and previous SMs, respectively. z represents 
the d istance between the camera and a  focused region, and 

 determines the rate at which distance effects decay. 
is a Laplacian function as shown in Eq. (6): 



 Volume 1, Issue 2, Winter 2012 43 Natural Intelligence: the INNS Magazine 

 
(6) 

where sp represents the center location of the salient area, v 
denotes a  pi xel i n t he s alient a rea ,  is t he width of  t he 
salient area an d C is a constant. T he L aplacian in E q. (6 ) 
reflects b rain-cell act ivity ch aracteristics s uch as  on-center 
(excitatory) and off-surround ( inhibitory) s ignals within the 
attention region. The stereo SM is constructed using not only 
depth i nformation, but  a lso s patial i nformation w ithin a  
salient area. 

4. Top-down visual attention 
4.1 Affective saliency map model 
To enhance the previously described bottom-up SM models, 
we n eed t o c onsider af fective f actors t hat r eflect h uman 
preference an d r efusal. A s an  af fective co mputing p rocess, 
the proposed model considers such a simple process that can 
reflect human’s preference and refusal for visual features by 
inhibiting an uninterested area and reinforcing an interested 
area r espectively, w hich ar e d ecided b y h uman. To p-down 
modulation of  vi sual i nputs t o t he s alience ne twork m ay 
facilitate a visual search (Mazer & Gallant, 2003). We avoid 
focusing o n a n ew ar ea h aving s imilar ch aracteristics t o a 
previously l earned u ninteresting a rea by ge nerating a  t op-
down bi as s ignal obt ained t hrough a  t raining pr ocess. 
Conversely, humans can focus on an interesting area even if 
it does not have salient primitive features, or is less salient 
relative to another area. In Lee’s trainable selective attention 
scheme (Choi et al., 2006), fuzzy adaptive resonance theory 
(ART) networks l earn t he c haracteristics o f u nwanted a nd 
interesting ar eas (Carpenter, Grossberg, M arkuzon, 
Reynolds, & Rosen, 1992), but the training process was not 
considered to generate suitable top-down bias weight values. 
They onl y c onsidered f ixed weight va lues f or bi asing f our 
different features a ccording to i nhibition o r r einforcement 
control s ignals. I  i ntroduce a  a ffective S M m odel us ing a 
top-down bias s ignal t hat i s obt ained by  m eans of  t he 
Hebbian learning process, which generates adaptive weight 
values intensified according to co-occurrence of the s imilar 
feature b etween i nput an d memorized characteristics i n 
every feature (Haykin, 1999). 

Fig. 10 shows the selective attention model with affective 
factors. T he t op-down weight va lues a re t rained by  the  
Hebbian l earning m ethod t he a ctivation va lues of  t he S M 
and those of each feature map (FM) as shown in preference 
Eq. (7) and refusal Eq. (8), where sp is the center location of 
the salient area and  denotes a pixel in a salient area. The 
weight va lues, , i n each  f eature map i ncrease o r 
decrease according to the training results. 

 (7) 
 (8) 

The t raining we ights f or refusal a nd p reference of  h uman  

 and  are calculated by Eqs. (9) and (10).  

 (9) 

 

Figure 10. Selective attention model considering affective factors 

  

 (10) 

Eqs. ( 9) a nd (10) a re o btained by  t he Hebbian l earning 
method based on coincidence of two activities, which are the 
activity of  t he S M a nd FM. n represents training t imes, N 
(=1,…,4) is a  FM in dex, a nd c represents a  n ode i n an  F2 
layer o f t he f uzzy A RT, o f w hich each  node r eflects a  

training p attern c lass.  and  represent l ocal 
activities o f t he F M an d t he S M, respectively, an d a re 
obtained by Eqs. (11) and (12), where η is a training rate and 
β represents the influence of the previous  on the current 
value.  

(11) 

 (12) 

 and  represent the FM and the SM 
at nth training time, respectively. 

4.2. Object oriented attention based on top-down 
bias 
When humans pay attention to a target object, the prefrontal 
cortex gives a competitive bias signal, related with the target 
object, to the IT and the V4 area. Then, the IT and the V4 
area generates target object dependent information, and this 
is t ransmitted t o t he l ow-level p rocessing part i n o rder t o 
make a co mpetition b etween t he t arget o bject d ependent 
information and features in whole area in order to filter the 
areas that satisfy the target object dependent features. 

Fig. 11 shows the overview of the p roposed model. The 
lower pa rt i n F ig. 11  ge nerates a  b ottom-up S M ba sed on 
primitive i nput f eatures s uch a s i ntensity, e dge a nd c olor 
opponency. In training mode, each salient object decided by 
the bottom-up SM is learned by a GFTART. For each object 
area, the log-polar transformed features of RG and BY color 
opponency f eatures r epresents co lor f eatures o f an  object. 
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Figure 11. Top-down object biased attention using GFTART. 

Orientation histogram and Harris corner based C1 features in 
the hierarchical MAX model proposed by Riesenhuber and 
Poggio are used as form features. Those extracted color and 
form features are used as the inputs of the GFTART. In top-
down object biased attention, the GFTART activates one of 
memorized c olor a nd f orm f eatures a ccording t o a  t ask t o 
find a specific object. The activated color and form features 
related with a target object are involved in competition with 
the color and form features extracted f rom each bot tom-up 
salient object area in an input scene. By such a c ompetition 
mechanism, a s s hown i n F ig. 11,  t he pr oposed m odel c an 
generate a t op-down s ignal tha t c an bi as the  t arget ob ject 
area in the input scene.  

Finally the t op-down o bject bi ased a ttention m odel c an 
generate a t op-down object biased SM, in which the target 
object area is mostly popped out.  

4.2.1 Top-down biasing using GFTART 

Fig. 12  s hows t he a rchitecture of  GFTART ne twork. T he 
inputs of the GFTART consist of the color and form features. 
Those features are normalized and then represented as a one-
dimensional array X that is composed of every pixel value ai 
of t he t hree f eature maps and each  co mplement ai

c is 
calculated by 1- ai, the values of which are used as an input 
pattern i n t he F1 l ayer o f t he G FTART m odel. N ext, t he 
GFTART fi nds t he w inning g rowing c ell s tructure (G CS) 
unit f rom a ll GCS u nits i n the F2 l ayer, by cal culating t he 
Euclidean distance between the bottom-up weight vector Wi, 
connected with e very GCS unit i n t he F 2 l ayer, a nd X is 
inputted. After selecting the winner GCS unit, the g rowing 
fuzzy TART checks the similarity of input pattern X and all 
weight vectors Wi of the winner GCS unit. This similarity is 
compared with the vigilance parameter , if the similarity is 
larger than the vigilance value, a new GCS unit is added to 
the F2 layer. In such situation, resonance has occurred, but if 
the similarity is less than the vigilance, the GCS algorithm is 

applied. The detailed GCS algorithm is described in 
(Marsland, Shapiro and Nehmzow, 2002). 

Our approach hopefully enhances the di lemma regarding 
the s tability of fuzzy A RT a nd t he p lasticity o f GCS 
(Marsland, e t a l. 2 002, C arpenter, et al. 1 992). T he 
advantages of this integrated mechanism are that the stability 
in t he c onvention f uzzy AR T i s e nhanced by  a dding t he 
topology pr eserving m echanism i n i ncrementally-changing 
dynamics by the GCS, while plasticity is maintained by the 
fuzzy A RT a rchitecture (K im e t a l., 2 010). A lso, a dding 
GCS t o f uzzy A RT i s go od n ot o nly f or pr eserving t he 
topology of the representation of an input distribution, but it 
also s elf ad aptively cr eates i ncrements a ccording to t he 
characteristics of the input features. 

 

 
Figure 12. The architecture of GFTART network. 

ρ



 Volume 1, Issue 2, Winter 2012 45 Natural Intelligence: the INNS Magazine 

 
Figure 13. Visual s elective attention m odel c onsidering a  
psychological distance as well as primitive visual features. 

4.3 Selective attention reflecting psychological 
distance 
Fig. 13 illustrates the proposed visual attention model, which 
is pa rtly inspired by  bi ological vi sual pa thway f rom t he 
retina t o t he vi sual c ortex t hrough t he L GN f or b ottom-up 
processing, w hich i s e xtended t o t he I T a nd P FC f or top-
down p rocessing. I n o rder t o im plement a  vi sual s elective 
attention function, three processes are combined to generate 
an af fective S M ( Ban e t a l. 2011). O ne generates a s tereo 
SM f rom bi nocular visions. S econd c onsiders o bject 
perception for categorizing and memorizing social proximal 
objects and social distal objects. Finally, an affective SM is 
constructed by c onsidering t he ps ychological di stance t hat 
reflects the r elationship between social d istance and spatial 
distance for an attended object. Social proximity or distance 
of a n at tended o bject i s p erceived by an  o bject 
categorization module. A nd t he s patial di stance t o a n 
attended ob ject f rom a n obs erver i s o btained f rom a  de pth 
perception module using the stereo SM. 

In or der t o d evelop m ore human like v isual s elective 
attention, w e need t o c onsider a  s tereo SM model f or 
binocular vi sions. T he s tereo v isual af fective S M m odel i s 
constructed by two mono SM models, which can give spatial 
distance i nformation p recisely. T hen, t he af fective S M 
model c onsidering t he ps ychological di stance c an be 
plausibly d eveloped b y r eflecting more ac curate r elation 
based on spatial distance information. 

Affective s tereo S M i s g enerated b y r eflecting a  
psychological di stance ba sed on bot h s ocial di stance a nd 
depth information of a salient area, in which the final stereo 
SM, , is obtained by Eq. (13): 

 (13) 

where t he qua ntitative va lue of  psychological di stance is  
obtained by  Eq. ( 14). The p sychological distance, 

 as s hown i n Eq. ( 14), i s obtained by  t he 
ratio between response time for congruent condition and that 
for i ncongruent c ondition o btained f rom e xperiments. I n 
congruent c ondition, t he c ongruent object a rea be comes 
more highly salient, which induces faster selection area in a  

 
Figure 14. Comparison of  s alient areas selected by various s tatic 
SMs. 
 
visual s can pa th. On t he ot her ha nd, i n t he c ase of  
incongruent condition, the incongruent object area becomes 
less salient, which induces slower selection area in a visual 
scan path. 

 

(14) 

 

5. Experimental Results 
Fig. 14 shows an e xperiment e xample in which t he 
proposed s tatic b ottom-up SM m odel ge nerates a  be tter 
attention pa th by  us ing s ymmetry i nformation a s a n 
additional i nput a nd I CA for feature i ntegration. The 
numbers in Fig. 14 show the attention priority according to 
the degree of saliency using different SM models. Fig. 14 (a) 
shows the experimental result of the SM model considering 
intensity, c olor a nd orientation a s features.  F ig. 14 (b) 
shows t he s can p ath result of t he S M m odel c onsidering 
intensity, co lor, o rientation and symmetry as  f eatures. F ig. 
14 (c) s hows t he e xperimental r esult of t he S M m odel 
considering intensity, color, orientation and symmetry 
features t ogether w ith ICA method for f eature i ntegration. 
The symmetry feature w ith ICA m ethod successfully 
reduces redundant information in FMs so that the final scan 
path focus on the flower as shown in Fig. 14 (c). 

Table 1  compares the p erformance for p referred o bject 
attention of t hree different S M m odels us ing hundreds o f 
test images. As shown in table 1, we achieve suitable scan 
path by c onsidering bo th the  s ymmetry f eature a nd ICA 
method, which m eans t hat object regions a re mostly 
selected as  at tention a reas by t he SM m odel c onsidering 
intensity, color, orientation, symmetry and ICA method.  

Fig. 15 shows the comparison of SMs such as static SM, 
dynamic S M, static an d d ynamic S M, an d i ntegrated S M 
that c ombines t he s tatic a nd dynamic S M w ith depth 
information. W e u se f ive s uccessive image f rames for 
extracting dynamic feature. As shown in F ig. 15 the s tatic 
and dynamic SM generates a maximum salient value for the 
attention area in each ca mera i mage. Comparing the 
maximum s alient v alues i n two cam era i mages, w e ca n 
adaptively decide t he camera w ith a  l arge s alient v alue as  
the m aster ey e. And w e generated t he i ntegrated SM t hat 
combines t he s tatic a nd d ynamic S M w ith d epth 
information from the master eye (Choi et al., 2006).  
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( )Psycho_distance ν

_

(

(

_ _ _
_ _ _

_ _ _
_ _ _

)

)

if congruent condition

then Psycho_distance

Psycho_distance

incongruency mean response time
congruency mean response time

else
congruency mean response time

incongruency mean response time

ν

ν

=

=
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TABLE 1. COMPARISON OF THREE DIFFERENT BOTTOM-UP SM 
MODELS FOR OBJECT PREFERRED ATTENTION. 

salient area      
1st salient area 143 150 165 
2nd salient area 103 104 106 
3rd salient area 64 77 68 
4th salient area 47 57 66 
5th salient area 28 32 46 
# of total  385 420 451 
Detection rate 77 % 84 % 90 % 

 
TABLE 2. COMPARISON OF THE DEGREES OF SALIENCY IN STATIC, 

DYNAMIC AND INTEGRATED SM MODELS. 

Salient 
objects Static SM Dynamic SM Static & 

Dynamic SM 
Right human 183 (1st) 139 (2nd) 161 (1st) 
Center kettle 143(2nd) 113 (3rd) 128 (3rd) 
Left human 135 (3rd) 171 (1st) 154 (2nd) 

 

TABLE 3. COMPARISON OF THE DEGREES OF SALIENCY ACCORDING 
TO DEPTH INFORMATION IN THE INTEGRATED SM MODEL. 

Salient 
objects 

Depth (m)  
in each 
salient area 
from  
static SM  

Degree of saliency in selected area 

Static SM 
Static & Dynamic SM 
with depth information  

τ2 =0.5 τ3 = 1.5 
Right 
human 0.86 183 (1st) 190 (1st) 252 (1st) 

Center 
kettle 2.4 143(2nd) 129 (3rd) 154 (3rd) 

Left 
human 1.3 135 (3rd) 164 (2nd) 218 (2nd) 

 

Table 2 shows the degrees of saliency of the static and the 
dynamic S Ms, which i s c alculated by t he average of  
saliency values in the salient areas. The degree of saliency 
changes while the integrated SM is generated as in Fig. 15, 
through which the plausibility of salient area choices can be 
verified e ven i f t he k ey bi ological mechanism f or 
integrating static and dynamic features is not reflected since 
it is not known well. 

Fig. 16  s hows t he s elective motion a nalysis r esults 
generated by the neural network model for motion analysis 
in conjunction with the integrated SM model. As Fig. 16 (a) 
shows, the proposed model only analyzes attention areas that 
are selected by the integrated SM model, and Figs. 16(b), (c), 
(d) a nd ( e) represent t he r elative de gree of  m otion 
information f or c ounter-clockwise, cl ockwise, ex pansion 
and contraction, r espectively. The area ‘ c’ in F ig. 16 ( a) i s 
moving t o c amera a nd r ightward di rection, t he a rea ‘ a’ i n 
Fig. 1 6(a) i s moving a way fro m c amera a nd l eftward 
direction . F ig. 1 6(d) s hows t hat t he proposed m odel 
properly d escribes motion c haracteristic o f ar ea ‘ a’ w ith 
contraction movement away f rom camera. Also, our model 
successfully r esponds t o t he rightward m otion i n a rea ‘ c’  
by pr oducing an i ncreased a mount of  m otion i nformation 
and a little response for motions of static object in area ‘b’ as 
shown in Figs. 16(b), (c), (d) and (e). 

 
Figure 15. Comparison of SMs among static SM (SSM), dynamic 
SM (DSM), t he s tatic and dynamic S M (S&DSM), and  t he 
integrated SM (ISM) 

 
Figure 16. Experimental results of motion analysis using integraed 
SM. 

 
Figure 17. Comparison of real depth with estimated depth obtained 
by the stereo SM model. 

Fig. 17 compares real depth with mean estimated one by 
the stereo SM model, in which we use the tens of data for 
estimating for each depth error. As Fig. 17 shows, the stereo 
SM model properly estimates depth. Although humans can 
perceive r elative depth well, t hey m ay n ot es timate r eal 
depth c orrectly, w hereas t he p roposed s tereo S M m odel 
successfully es timates real depth within the range between 
0.5m and 4m. 

Table 3 shows how the average of saliency values in each 
salient area can be changed by using different  values in 
Eq. (5) and constant value C that is fixed as 1 in Eq. (6). It 
is h ard t o decisively f ix t he  value b ased on  kn own 
biological mechanism. However, the data in Table 4 shows 
the importance of depth information in generating attention. 
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TABLE 4. PERFORMANCE OF THE AFFECTIVE SM MODEL AFTER 
TRAINING LIP AREAS AS A PREFERENTIAL REGION. 

 96 Training 
Images 

90 Test images 

Bottom-up SM Affective SM 

# of with lip 96 35 88 

# of without lip 0 55 2 

Correct rate 100 (%) 39 (%) 98 (%) 

 
 

 
Figure 18. Affective saliency experiments 

Fig. 18 s hows ex perimental r esults u sing t he af fective 
saliency of  our model. Fig. 18 (a) shows the results of the 
bottom-up SM m odel. F ig. 18 (b) s hows th e r esults of  
preferable o ne according to h uman affective f actors after 
being t rained by t he a ffective SM m odel f or preferential 
processing. Fig. 18 ( b) s hows m odified s can p aths after 
preference processing for the lips: the lip area in Fig. 18 (a) 
became the most salient area in Fig. 18 (b). Fig. 18 (c) sows 
the S Ms generated b y t he affective S M model w ith l ip 
preference. 

Table 4 compares the performance of the bottom-up SM 
model with that of the affective SM model for focusing on 
the l ip a rea i n face i mages. P OSTECH F ace Database 
2001(FD01) (Kim, Sung, Je, Kim, Kim, Jun, & Bang, 2002) 
was used f or the e xperiments. As  s hown in T able 4, t he 
bottom-up SM model can pay attention to the lip area with 
an acc uracy of 39%. However, t he af fective S M m odel 
shows 98 % a ccuracy t o focus on  t he lip a rea in t he t est 
images. 

To verify t he performance, t he proposed G FTART wa s 
tested on t wo p ractical c ategorization problems. T he f irst 
problem is to categorize pedestrians and cars on real traffic 
roads obtained f rom KNU and MIT CBCL databases. F ig. 
19 sh ows so me e xample i mages f rom 1 2 data sets 
consisting i mages of c ars a nd p edestrians from t he K NU 
database. Three among the 12 data sets were different class 
data s ets (pedestrian i mages) w ith d ifferent ch aracteristics 
from the other 9 data sets (car images). The 3rd, 8th, and 11th 
data sets were pedestrian images, while the o ther data sets 
were all car images. 

We ha ve s hown t hat t he relation be tween ps ychological 
distance an d s patial d istance can  a ffect t o visual s elective 
attention process by the previous experiments. Fig. 20 shows 
the ex perimental r esults o f t he s tereo af fective S M model. 
Fig. 20 (a) shows a process for generating a stereo SM from 
two i nput i mages b y l eft a nd r ight c ameras. L eft a nd r ight 
SMs a re ge nerated f rom c orresponding l eft a nd r ight i nput 
image by  bot tom-up f eature e xtraction and i ntegration 
process. T hen those t wo S Ms a re i ntegrated a s one s tereo 
SM by  r eflecting depth i nformation obt ained f rom a  de pth  

 
Figure 19. Sample images for cars a nd pedestrians i n r eal t raffic 
roads. 

 
Figure 20.  Comparison o f v isual s can p ath generated b y the 
proposed affective SM model considering a psychological distance 
with t hat b y t he s tereo S M without co nsidering a p sychological 
distance and human real visual scan path 

 
perception m odule. F ig. 2 0 ( a) s hows a  visual s can p ath 
generated by the visual attention model without considering 
the p sychological d istance. A n af fective s tereo S M, as  
shown i n F ig. 2 0 (b), i s c onstructed by c onsidering t he 
psychological di stance t o c onstruct t he final s tereo S M 
results. Finally a m odified visual scan path by the affective 
SM i s ge nerated a s s hown i n F ig. 2 0 (c), in w hich s ocial 
distal visual stimuli given at a distant monitor (right monitor 
among two monitors) becomes more salient by considering 
psychological distance since congruent condition is occurred. 
In order to verify plausibility of  the f inally obtained visual 
scan p ath b y t he af fective S M, w e m easured r eal h uman 
visual scan path for the same visual stimulus as shown in Fig. 
20 (d). Human visual scan pa th in F ig. 20 (d) shows more 
similar s can pa th wi th t he vi sual s can pa th i n F ig. 2 0 ( c) 
generated b y t he af fective S M model t han t he v isual s can 
path without considering psychological distance as shown in 
Fig. 20 (a).   

Fig. 2 1 s hows t hat t he pr oposed visual a ttention m odel 
successfully r eflects the ps ychological di stance i n bot h 
congruent conditions and incongruent conditions. As shown 
in F ig. 21,  c ongruent vi sual s timuli be come most s alient 
through intensifying the degree of saliency in the course of 
reflecting psychological distance concept. On the other hand, 
in i ncongruent c onditions s hown i n F ig. 2 1, i ncongruent 
visual s timuli become less s alient through diminishing t he 
degree of s aliency by  t he p roposed vi sual a ttention model. 
For a ll t rials as s hown i n F ig. 2 1, t he v isual s can p ath 
generated by the pr oposed visual a ttention m odel s hows 
higher s imilarity with real human visual scan path than the 
visual s can path ge nerated by  wi thout c onsidering a  
psychological distance. 
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Figure 21.  Com parison of  vi sual s can pa ths by the s tereo S M 
without considering a p sychological distance and the affective SM 
considering a p sychological d istance w ith r eal human v isual s can 
paths for congruent trials and incongruent trials. 

6. Conclusion 
I present several kinds of biologically motivated SM that is 
partly i nspired by human v isual s elective a ttention 
mechanisms. Our experiments also illustrate the importance 
of i ncluding a s ymmetry F M a nd ICA f iltering, which 
provide enhanced performance i n ge nerating preferred 
object a ttention. T he presented s elective attention m odel 
can al so g enerate a S M t hat i ntegrates t he s tatic an d 
dynamic f eatures as  well as  af fective factors a nd depth 
information in natural input scenes. In particular, we added 
a He bbian l earning process to ge nerate a  top-down bias 
signal based o n h uman a ffective f actors, which e nhances 
the p erformance o f t he previous L ee’s t rainable s election 
attention s cheme ( Choi e t al., 2 006). Another proposed 
selective a ttention m odel, w hich i s m otivated f rom Ba r-
Anan’s p sychological d istance ex periments, i s a n ovel 
approach that considers psychological distance related with 
familiarity an d p reference as  w ell as  s patial d istance i n a 
stereo saliency map. 

Moreover, an incremental neural network was introduced, 
which wa s ba sed on c ombining t he conventional f uzzy 
ART model and the GCS model. It plays important role for 
generating bias signals for the proposed object-oriented top-
down attention model. Experimental results verified that the 
proposed m odel i s a ble t o u tilize t he a dvantages of e ach 
model, w hile a lleviating t heir r espective d isadvantages. 
Nonetheless, a  m ore ap propriate v igilance measure i s still 

needed for the GFTART model to enable a proper 
comparison of the topology of each object class represented 
by a GCS unit in the F2 layer.  

The a ttention mechanism is so complex that we need to 
find m ore b iological m echanisms r elated t o generating 
attention o r i ndirectly g et i nsights f rom k nown biological 
mechanism in further work. 
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Abstract 
This review presents an overview of computational auditory scene 
analysis (CASA), as biologically inspired approaches for machine 
sound s eparation. In this r eview, w e address hum an a uditory 
system c ontaining e arly auditory s tage, bi naural combining, 
cortical s tage, a nd t op-down attention. W e c ompared the m odels 
employed for  CA SA, e specially for e arly auditory a nd cortical 
stages. We emphasized on how the existing models are similar to 
human a uditory m echanism fo r s ound s eparation. F inally, w e 
discussed current issues and future of this task.  

Keywords: Auditory model, CASA, auditory scene analysis 

1. Introduction 
In a  natural e nvironment, s peech usually oc curs 
simultaneously w ith a coustic i nterference. T he a coustic 
interference, as  a noise, r educes the p erformance of 
automatic speech r ecognition ( ASR) systems. Th e m ost 
challenging issue is when the interference is another speech 
signal. H ence, m any r esearchers ar e i nterested i n s peech 
signal separation task.  

Some researchers have tried to separate signals explicitly 
using c onventional s ignal p rocessing a pproaches, s uch as 
blind s ignal separation (BSS) methods [1-6]. In this set o f 
methods, microphone arrays are usually required to prepare 
input m ixtures of  s ignals. Independency of t he s ources i s 
also an essential requirement of the methods. Other studies 
have tried to model human auditory system to overcome the 
problem implicitly [7-13].  

Physiologically, with no more than two ears, the human 
auditory s ystem s hows a remarkable cap acity f or s cene 
analysis. T his i s what Ch erry c alled i t the c ocktail p arty 
effect for the first time [14][15]. Cherry in [15] wrote: "One 
of our most important faculties is our ability to listen to, and 
follow, one speaker in the presence of others. This is such a 
common e xperience t hat we may t ake i t f or granted; we 
may c all it 'the c ocktail p arty p roblem'. N o m achine h as 
been c onstructed t o d o just t his, t o filter out  one 
conversation from a number jumbled together."  

According to B regman [16], t he a uditory s ystem 
separates the acoustic signal into streams, corresponding to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
different sources, based on a uditory s cene analysis ( ASA) 
principles. Research in ASA has inspired considerable work 
to b uild c omputational a uditory s cene a nalysis ( CASA) 
systems for sound separation. Physiological models of ASA 
may i n t urn l ead t o us eful e ngineering s ystems f or s ound 
separation a nd s peech e nhancement. Although th ere is  no 
requirement t hat a p ractical system s hould b e based o n a 
physiological account, AS A approaches based on ne ural 
models are attractive because they are comprised of simple, 
parallel and distributed components and a re therefore we ll 
suited to hardware implementations [17].  

Generally, in the conventional CASA systems, the input 
is s upposed t o be a  m ixture o f t arget s peech a nd t he 
interferences. Hence, t he i nterferences ar e r emoved b y a 
binary ( or g ray) m ask i n a  t ime-frequency r epresentation, 
using two m ain stages: segmentation ( analysis) a nd 
grouping ( synthesis) [13]. I n s egmentation, t he a coustic 
input i s decomposed i nto continuous t ime-frequency un its 
or segments. Each of t hese s egments originates f rom a 
single s peaker. In g rouping, t hose segments t hat l ikely 
come from the same source are grouped together. 

Although, many CASA approaches have presented in the 
last two decades, the current models of the human auditory 
system for this task still need to be improved. In the rest of 
the current review, we  mention the physiology of  hearing, 
and t hen investigate different h uman a uditory m odels in 
CASA, especially for early auditory and cortical stages.  

2. Human Auditory System 
Generally, human auditory system contains the ears and the 
central a uditory s ystem [ 18]. As t he e arly auditory s tage, 
ear r eceives the sound waves and generates co rresponding 
neural s ignals for t he c entral a uditory s ystem. F igure 1(a) 
illustrates t he physiology o f t he e ar c ontaining t he outer, 
middle and inner ears. The outer ear includes the pinna, the 
ear canal, and the very most superficial layer of the eardrum. 
The o uter ea r acts as  a  s ound collector a nd enhances t he 
sound vibrations best at the human audible frequency range. 
Moreover, it serves sound amplification and localization.  

The middle ear, including most of the eardrum and three 
bones, c onverts t he a coustic energy of t he sound i nto t he 
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mechanical v ibration. T he mechanical v ibration o f t he 
eardrum i n t he middle ear  h elps t he l ast bone ( stapes) t o 
push t he f luid i n a nd out o n t he c ochlea. T he m ost 
complicated p art o f t he ear , t he i nner ea r i ncludes t he 
cochlea a nd t he v estibular system. S ince t he v estibular 
system is not related to our topic, we avoid its description.  
The c ochlea i s a  s ystem of  c oiled t ubes c onsisting o f t wo 
liquid-filled tubes coiled side by side as shown in the cross 
section i n F igure 1 ( a). T he t wo main tubes ar e s eparated 
from each other by the basilar membrane. Along the coil of 
the cochlea, the basilar membrane is approximately 35 mm 
in length and its stiffness varies by a factor of 100 along its 
length. The physical characteristics of the basilar membrane 
make i t act  l ike a frequency an alyzer, wh ich re sponds 
tonotopically to the sound. 

On the surface of the basilar membrane lies the organ of 
Corti, which contains a series of electromechanically 
sensitive c ells, c alled t he h air c ells. The i nner h air cel ls 
convert the vibrating fluid into neural signals, i.e. spikes. In 
fact, t he ou tput of  e ach inner h air cell represents a coustic 
input signal with specific frequency filtering and nonlinear 
characteristics through t he s pikes. Furthermore, t he outer 
hair cells are believed to conduct the function of automatic 
gain controls.  

The neural spikes generated in the early auditory stage go 
to t he next s tage, c entral auditory system, fo r f urther 
processing. Figure 1(b) demonstrates a simplified schematic 
diagram of the human auditory pathway in which the early 
auditory s tage i s s hown by l eft a nd r ight cochleas. In t he 
central a uditory s ystem, t he s ound i nformation t ravels 
through i ntermediate s tations s uch as  t he c ochlear nucleus 
and s uperior olivary c omplex (SOC) of t he b rainstem a nd 
the inferior colliculus (IC) of the midbrain. As shown in the 
figure, the information eventually reaches the medial 
geniculate nucleus (MGN) in thalamus, and from there it is 
relayed to the primary auditory cortex, which is located in 
the temporal lobe of the brain. 

Signals f rom bot h l eft a nd right e ars m erge a t SOCs. 
Physiologically, the medial superior olive (MSO) in SOC is 
a s pecialized n ucleus t hat i s b elieved to m easure t he 
interaural time difference (ITD). The ITD is a major cue for 
determining t he a zimuth of  l ow-frequency s ounds, i. e., 
localizing them on t he azimuthal plane, their degree to the 
left or the right. On the other hand, the lateral superior olive 
(LSO) is believed to be involved in measuring the interaural 
level d ifference ( ILD). T he ILD i s a s econd m ajor cu e i n 
determining the azimuth of high-frequency sounds. 

Major a scending a uditory pathway c onverges in I C 
before sending to the thalamus and cortex. IC appears as an 
integrative s tation a nd s witchboard. It i s i nvolved i n t he 
integration and routing of multi-modal sensory perception. 
It is also r esponsive t o s pecific a mplitude m odulation 
frequencies, and this might be  responsible for detection of  
pitch. In addition, spatial localization by binaural hearing is 
a related f unction of I C, specifically r egarding the 
information from the SOC. 

Moreover, M GN r epresents t he t halamic relay b etween 
the IC and the auditory cortex.  It is thought that the MGN 
influences the direction and maintenance of attention. MGN 

 
(a) 

 

 
(b) 

Fig. 1. (a) The ear including outer, middle and inner ears converts 
the a coustic signal i nto neural pa tterns for t he central a uditory 
system. (b) A simplified schematic diagram of the human auditory 
pathway. Signals from both left and right ears merge at SOCs, and 
go to auditory cortexes through ICs and MGNs. Also, there exist 
backward paths from the higher bra in through auditory c ortex to 
the cochlea. The s ignal processing mechanism between SOC and 
auditory cortex is less understood, and represented as dotted lines. 

 

is p rimarily r esponsible for r elaying frequency, i ntensity 
and binaural information to the cortex. In addition, some of 
the neurons i n MG N respond t o ot her s timuli of ten from 
somatosensory. The behavior o f t hese cells is c omplicated 
by t he f act t hat s ensory s timulation f rom o ther m odalities 
modifies the responsiveness of many of them. Moreover, it 
is n ot c lear whether t here t ruly i s o ne, n one, o r m any 
tonotopic organizations maps present in the MGN. 

Eventually, t he au ditory c ortex r eceives t he i nformation 
from the thalamus. Functionally, the cortical stage estimates 
the s pectral a nd t emporal modulation c ontent of  t he e arly 
stage output. T he c urrent u nderstanding of c ortical 
processing reveals that cortical units exhibit a wide variety 
of receptive field profiles. These response fields, also called 
spectrotemporal receptive fields (STRFs), represent a t ime-
frequency transfer function of each neuron and summarize 
the way each cell responds to the stimulus, hence capturing 
the s pecific s ound features that s electively d rive t he ce ll 
best. 
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Speech r ecognition a nd l anguage understanding t ake 
place a t t he higher b rain via t he i nteraction with o ther 
regions of t he br ain. F urthermore, t here exist ba ckward 
paths f rom the higher brain through auditory cortex to the 
cochlea. Although t he e arlier a uditory s ignal processing 
mechanisms a t cochlea a nd possibly u p to SOC a re 
relatively well understood, the signal processing mechanism 
between SOC and auditory cortex i s l ess u nderstood [ 19], 
and represented as dotted lines in Figure 1(b).  

Several biologically inspired models of the human 
auditory system are reported in the literatures. According to 
[19], t he de veloped m athematical models of  t he human 
auditory pathway i nclude t hree c omponents: ( 1) t he 
nonlinear feature ex traction model f rom the cochlea to the 
auditory c ortex, ( 2) t he bi naural processing m odel i n 
brainstem a nd midbrain, a nd ( 3) t he t op-down a ttention 
model f rom hi gher brain t o t he c ochlea. I n t he following, 
we mostly focus on the feature extraction models utilized in 
CASA in two parts: early auditory and cortical processing. 

3. Models for the Early Auditory Stage 
Mainly, t he e arly a uditory models mimic t he function of 
basilar m embrane i n t he c ochlea by e ither a  t ransmission 
line, i.e. a cascade of filter section, or a filter bank, in which 
each filter models the frequency response associated with a 
particular point on the basilar membrane. Then, the outputs 
of t he basilar membrane a re f urther processed t o de rive a 
simulation of auditory nerve activity using a representation 
of f iring r ate or spike-based r epresentation b y a  half-wave 
rectification of the filterbank output followed by a nonlinear 
function. A  m ore s ophisticated a pproach may model t he 
automatic ga in c ontrol o f outer ha ir c ells and midbrain 
integration, as well. 

Proposed i n t he l ast t wo decades, many C ASA s ystems 
have i nvestigated t he r ole o f t he e arly a uditory s tage i n 
performing f requency a nalysis a nd t ransforming t he 
waveform s ignal i nto a  2D t ime-frequency re presentation. 
Conventional C ASA s ystems ut ilize A SA c ues t o 
decompose this 2D representation into sensory segments in 
segmentation s tage, as  well as  to assign those segments to 
corresponding s peakers i n g rouping s tage [8]. Among 
several m odels f or ea rly au ditory s tage, we e xplain t wo 
well-known m odels t o generate au ditory s pectrogram an d 
cochleagram representations in the following.  

3.1. Auditory Spectrogram 
A s elf-normalized and noi se-robust a uditory s pectrogram 
for early auditory representation is introduced by Wang and 
Shamma in 1 994 [20]. In  brief, t he e arly a uditory s tage 
consists o f c ochlear filter b ank, hair cell t ransduction, 
lateral i nhibitory n etwork (LIN), and midbrain integration. 
The s chematic di agram of  t he model f or t he a uditory 
spectrogram is illustrated in Figure 2(a).  

In the first stage, the cochlear filter bank contains a bank 
of 128 overlapping band pass filters with center frequencies 
uniformly distributed along a logarithmic frequency axis (x), 
over 5.3 o ct ( 24 f ilters/octave). Let 𝑓(𝑡; 𝑥)be t he i mpulse 

response of each filter. Then, given 𝑠(𝑡), the input signal in 
time domain, the cochlear filter output is calculated by  

 
𝑦𝑐𝑜𝑐ℎ(𝑛, 𝑥) = 𝑠(𝑡) ∗𝑡 𝑓(𝑡; 𝑥)    (1) 

 

where ∗t is convolution in time domain.  
These c ochlear filter o utputs a re t ransduced i nto 

auditory-nerve pa tterns 𝑦𝐴𝑁(𝑡, 𝑥)  by a hair cel l s tage 
consisting o f a  high-pass f ilter, a  nonlinear c ompression 
𝑔(. ) , an d a membrane leakage l ow-pass filter 𝜔(𝑡) 
accounting for decrease o f p hase-locking on t he a uditory 
nerve beyond 2 kHz, as follows: 

 

 𝑦𝐴𝑁(𝑡, 𝑥) = 𝑔�𝜕𝑡𝑦𝑐𝑜𝑐ℎ(𝑡, 𝑥)� ∗𝑡 𝜔(𝑡).       (2) 
 

The next transformation s imulates the action of laterally 
inhibition. The LIN is simply approximated by a first-order 
derivative with r espect t o t he t onotopic a xis a nd f ollowed 
by a half-wave rectifier, as follows:  

𝑦𝐿𝐼𝑁(𝑡, 𝑥) = 𝑚𝑎𝑥(𝜕𝑥𝑦𝐴𝑁(𝑡, 𝑥), 0).      (3) 
 

The f inal output of  this step, t he a uditory s pectrogram 
𝑝(𝑡, 𝑥), is o btained by i ntegrating 𝑦𝐿𝐼𝑁(𝑡 , 𝑥) over a s hort 
window, 𝜇(𝑡, 𝜏) = 𝑒−𝑡/𝜏𝑢(𝑡), with time constant 𝜏 = 8 ms 
mimicking the further loss of phase locking observed in the 
midbrain, as 

 
𝑝(𝑡, 𝑥) = 𝑦𝐿𝐼𝑁(𝑡, 𝑥) ∗𝑡 𝜇(𝑡, 𝜏).           (4) 

3.2. Cochleagram  
The w ell-known c ochleagram introduced by  Wang a nd 
Brown in [12] is another model for the early auditory stage 
which is utilized in many CASA systems [8-11]. The stages 
of generating the cochleagram are shown in Figure 2 (b). In 
the c ochleagram, t he basilar m embrane i s m odeled by 
gammatone filters. The g ammatone i s a bandpass f ilter, 
whose impulse response, gfc(t), is the product of a gamma 
function and a tone: 
 

 𝑔𝑓𝑐(𝑡) = 𝑡𝑁−1𝑒−2𝜋𝑡𝑏(𝑓𝑐) cos(2𝜋𝑓𝑐𝑡 + 𝜙)𝑢(𝑡).        (5) 
 

Here, N is the f ilter o rder, 𝑓𝑐 is the filter center f requency 
in H z, 𝜙 is t he pha se, a nd 𝑢(𝑡) is t he u nit s tep function. 
The f unction 𝑏(𝑓𝑐) determines t he ba ndwidth for a  given 
center frequency. The bandwidth of the gammatone filter is 
usually s et a ccording t o m easurements of  t he e quivalent 
rectangular ba ndwidth ( ERB), w hich i s a  good m atch to  
human data, given by 
 

𝐸𝑅𝐵(𝑓) = 24.7 + 0.108𝑓.           (6) 
 

The ce nter frequencies a re l inear i n E RB d omain an d 
usually from 50 Hz to 8 kHz. 

The gammatone filterbank is often paired with the model 
of hair c ell t ransduction pr oposed by M eddis [21]. 
Physiologically, i n t he i nner h air c ells, movements of t he 
stereocilia, h airs a ttach to t he hair-cell, cause a 
depolarisation of the inner hair cell, which in turn results in 
a r eceptor potential. T he receptor p otential i n t he hair-cell 
causes t he release of  neurotransmitter i nto t he a uditory 
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nerve i.e., the synaptic cleft. The change in neurotransmitter 
concentration generates a spike. After such a spike it takes a 
while to prepare for the next spike. This no-spike period is 
called the absolute refractory period and lasts 
approximately 1 ms.  

Specifically, in the meddis model, t he rate of change of 
the a mount o f neurotransmitter i n t he s ynaptic c left i s 
calculated by  

 
𝑑𝑐(𝑡)
𝑑𝑡

= 𝑘(𝑡)𝑞(𝑡) − 𝑙𝑐(𝑡) − 𝑟𝑐(𝑡),        (7) 

 

where 𝑘(𝑡)  is t he p ermeability, 𝑞(𝑡)  is t he t ransmitter 
level, 𝑐(𝑡) is the amount of transmitter in the synaptic cleft, 
𝑙 is a  l oss factor, a nd 𝑟 is a  return factor. T hus t he t erm 
𝑘(𝑡)𝑞(𝑡)  is t he a mount o f t ransmitter received f rom t he 
hair-cell, 𝑙𝑐(𝑡) is t he a mount of transmitter l ost f rom t he 
cleft and 𝑟𝑐(𝑡) is the amount of transmitter returned to the 
hair-cell. 

Eventually, from t he a ssumption t hat t he s pike 
probability i s p roportional t o t he a mount of t ransmitter i n 
the synaptic c left, the p robability o f s pike g eneration is 
calculated as follows, 

 

𝑃 =  ℎ𝑐(𝑡)𝑑𝑡,           (8) 
 

where ℎ  is t he p roportionality f actor. The p robability i s 
computed f or every o utput of t he gammatone f ilterbank, 
independently.  

3.3. Discussion  
An e xample o f t he auditory spectrogram a nd the  
cochleagram is demonstrated in Figure 3. By comparing the 
figures (a) an d (b), t he auditory s pectrogram a nd t he 

 

 
Fig. 2 . The s tages of  two early aud itory models: (a) A uditory 
spectrogram, and (b) Cochleagram.  

 
(a) 

 
(b) 

Fig. 3 . D ifferent time-frequency representations of  t he s entence 
“come hom e ri ght a way” i n T IMIT c orpus ut tered b y a  m ale 
speaker. (a) Auditory spectrogram of Wang and Shamma [20]. (b) 
Cochleagram introduced by Wang and Brown [12].  

 

cochlearagm for the same sentence “come home right away” 
show d ifferent time-frequency representation o f similar 
characteristics.  

It was demonstrated that the auditory spectrogram has a 
significant advantage ove r conventional r epresentations in 
noise robustness w hen e mployed a s a  front-end fo r A SR 
systems and for source separation [7][20]. The spectrogram 
is also self-normalized which means it has relative stability 
with r espect t o a n overall s caling. F urthermore, t he 
representation i s suitable for music processing, because o f 
its 1 /12-octave s pacing of cen ter frequencies, w hich 
matched t o t he n ote s pacing. It i s al so appropriate f or 
harmonic a nalysis, be cause of i ts s harpness i n f requency 
axis as a r esult o f the l aterally i nhibition process, a s i t i s 
clear from Figure 3(a).  

On the other hand, the Meddis model in the cochleagram 
represents a good c ompromise b etween accuracy and 
computational efficiency. The model replicates many of the 
characteristics of a uditory n erve r esponses, in cluding 
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rectification, c ompression, s pontaneous f iring, s aturation 
effects and adaptation.  

Although s ome C ASA research have e stablished t heir 
methods on cochleagram domain [10][22][23], correlogram 
extracted f rom t he c ochleagram al so shows a  robust time-
frequency representation, especially for p itch estimation in 
multiple s imultaneous s ources i n several research 
[9][24][25]. T he c orrelogram i s us ually c omputed i n t he 
time dom ain by  a utocorrelating t he s imulated a uditory 
nerve f iring a ctivity a t the o utput of eac h co chlear filter 
channel, resulting in a 3D time-frequency-lag representation 
of the acoustic signal.  

4. Models for the Cortical Stage 
As described in the previous section, an early stage captures 
the process from the cochlea to the midbrain. It transforms 
the a coustic s timulus t o a n a uditory t ime-frequency 
spectrogram-like re presentation. Although, m any C ASA 
systems have employed human early auditory modeling, a 
few papers have explored the role of cortical mechanisms in 
organizing complex auditory scenes. In fact, auditory cortex 
in o r near H eschl’s g yrus, as  w ell as  in t he planum 
temporale are involved in sound segregation [26].  

Generally, the role of the cortical stage is to analyze the 
spectrotemporal c ontent o f t he spectrogram. I n t he 
following, we mention t wo c ortical models known a s 
multiresolution s pectrotemporal a nalysis a nd l ocalized 
spectrotemporal analysis. The utilization of the models for 
CASA is considered as well. 

4.1. Multireseolution Spectrotemporal Analysis 
Chi et. al. in [27] have described a computational model of 
auditory a nalysis t hat is s trongly i nspired by 
psychoacoustical a nd neurophysiological f indings over t he 
past t wo decades i n both early an d ce ntral s tages of t he 
auditory system. The model for the early auditory s tage is 
the auditory spectrogram described in Section 3.1.  

The ce ntral s tage, s pecifically, models t he p rocess i n 
primary a uditory c ortex. It d oes s o c omputationally vi a a  
bank of filters that are selective to different spectrotemporal 
modulation parameters t hat range f rom slow to fast rates 
temporally, and f rom narrow to broad scales s pectrally. 
Various t emporal an d s pectral ch aracteristics o f cel ls ar e 
revealed in their STRFs. In the model, they assumed a bank 
of directional selective STRF’s (downward [−] and upward 
[+]) t hat a re r eal f unctions f ormed by  c ombining tw o 
complex functions of time and frequency as follows, 
 

   𝑆𝑇𝑅𝐹+ = ℜ{𝐻𝑟𝑎𝑡𝑒(𝑡;𝜔,𝜃).𝐻𝑠𝑐𝑎𝑙𝑒(𝑓;Ω,𝜙)}, 
𝑆𝑇𝑅𝐹− = ℜ{𝐻𝑟𝑎𝑡𝑒∗ (𝑡;𝜔,𝜃).𝐻𝑠𝑐𝑎𝑙𝑒(𝑓;Ω,𝜙)},     (9) 

 

where ℜ denotes the real part, ∗ is the complex conjugate, 
𝜔  and Ω  are rate an d s cale p arameters o f S TRF 
respectively, a nd 𝜃  and 𝜙  are characteristic p hases t hat 
determine t he d egree o f asymmetry al ong t ime an d 
frequency, r espectively. F unctions 𝐻𝑟𝑎𝑡𝑒  and 𝐻𝑠𝑐𝑎𝑙𝑒  are 
analytic signals obtained from ℎ𝑟𝑎𝑡𝑒 and ℎ𝑠𝑐𝑎𝑙𝑒: 
 

 𝐻𝑟𝑎𝑡𝑒(𝑡;𝜔,𝜃) = ℎ𝑟𝑎𝑡𝑒(𝑡;𝜔,𝜃) + 𝑗ℎ�𝑟𝑎𝑡𝑒(𝑡;𝜔,𝜃), 

𝐻𝑠𝑐𝑎𝑙𝑒(𝑓;Ω,𝜙) = ℎ𝑠𝑐𝑎𝑙𝑒(𝑓;Ω,𝜙) + 𝑗ℎ�𝑠𝑐𝑎𝑙𝑒(𝑓;Ω,𝜙),  (10) 
 

where . ̂  denotes H ilbert t ransform. ℎ𝑟𝑎𝑡𝑒  and ℎ𝑠𝑐𝑎𝑙𝑒  are 
temporal a nd s pectral i mpulse r esponses de fined by 
sinusoidally i nterpolating between symmetric seed 
functions ℎ𝑟(. )  and ℎ𝑠(. ) , a nd t heir a symmetric H ilbert 
transforms:   
 

 ℎ𝑟𝑎𝑡𝑒(𝑡;𝜔,𝜃) = ℎ𝑟(𝑡;𝜔) cos𝜃 + ℎ�𝑟(𝑡;𝜔) sin𝜃, 
ℎ𝑠𝑐𝑎𝑙𝑒(𝑓;Ω,𝜙) = ℎ𝑠(𝑓;Ω) cos𝜙 + ℎ�𝑠(𝑓;Ω) sin𝜙.   (11) 

 

Eventually, t he im pulse r esponses f or di fferent s cales a nd 
rates are given by dilation  
 

           ℎ𝑟(𝑡;𝜔) = 𝜔ℎ𝑟(𝜔𝑡), 
ℎ𝑠(𝑓;Ω) = Ωℎ𝑠(Ω𝑓),              (12) 

 

in which  
 

           hr(t) = t2e−3.5t sin 2πt, 
hs(f) = (1 − s2)e−s2/2 .     (13) 

 

As shown in th e F igure 4(a), t he convolution be tween 
STRFs and the spectrogram gives an  es timate o f the t ime-
varying firing r ate of  t he ne urons, generating a 
multidimensional r epresentation of t he waveform s ignal 
with time, frequency, scale, and rate axis. 

Numerous studies have utilized the computational model 
for feature extraction [ 28][29] an d speech e nhancement 
[7][30]. A mong them, Elhilali a nd S hamma i n [7] have 
utilized it for a sound s eparation t ask c onsists of a 
multidimensional f eature r epresentation stage followed b y 
an integrative clustering stage in which the segregation was 
performed based o n an unsupervised c lustering a nd t he 
statistical theory of Kalman prediction.  

In the model, they broke down the cortical analysis into a 
spectral m apping an d a t emporal an alysis. T he s pectral 
shape a nalysis wa s c onsidered t o be  part o f t he f eature 
analysis s tage of t he m odel, as i t f urther maps t he s ound 
patterns into a spectral shape axis organized from narrow to 
broad s pectral f eatures. O n t he other hand, t he slow 
temporal dynamics ( <30Hz) c ame i nto pl ay i n t he next 
integrative and clustering stage. 

In the study, they have demonstrated that the model can 
successfully tackle aspects of the “cocktail party problem” 
and pr ovide an account o f the pe rceptual pr ocess du ring 
stream f ormation i n a uditory s cene a nalysis. T he m odel 
directly tested the premise that cortical mechanisms play a 
fundamental role in organizing sound features into auditory 
objects by (1) m apping the a coustic s cene i nto a  
multidimensional f eature s pace an d (2) u sing t he spectral 
and t emporal context t o di rect s ensory i nformation i nto 
corresponding perceptual streams.  

One of t he dr awbacks of  t he multiresolution 
spectrotemporal an alysis [27] is t hat t he s pectrotemporal 
responses are organized into a very large multi-dimensional 
representation, which is very hard to visualize and interpret. 
In contrast, the following localized spectrotemporal analysis 
presented in [31] is less computationally complex. 
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4.2. Localized Spectrotemporal Analysis 
A simplified m odel of  t he auditory c ortex i s presented i n 
[31] for analyzing the spectrotemporal content of the early 
auditory output. Wang and Quatieri in [31] have proposed 
the spectrotemporal analysis via a 2D Gabor filterbank over 
localized t ime-frequency pa tches of  a  narrowband 
spectrogram.  

To ge nerate the pa tches, a m oving wi ndow, us ually of 
size 50ms by 7 00Hz, sweeps whole the narrowband 
spectrogram w ith a r ational jump i n t ime an d f requency, 
usually 5ms and 1 00Hz, r espectively.  As an  ex ample a 
simplified ha rmonic pa tch o f t he c onventional short t ime 
Fourier t ransform ( STFT) spectrogram is i llustrated i n t he 
Figure 4 (b) l eft, in which the p arallel l ines show the 
harmonics. T he l ocalized spectrotemporal analysis can  b e 
done by a  s imple 2 D F ourier t ransform. Ce rtainly, a  2 D 
Hamming or  Gaussian w indow before t he t ransform 
prevents the aliasing effect.  

As s hown in Figure 4( b), t he t ransform of  t he parallel 
harmonic lines in the patch leads to two compressed points 
shown in the right figure, in which their vertical distance is 
related to the pitch value. Indeed, the 2D transform analyzes 
the t emporal and s pectral dynamics o f t he s pectrogram. 
Therefore, t he l ocalized spectrotemporal an alysis i s 
spiritually v ery s imilar t o t he previous model [27], except 
its l ocalized p rocessing and c onsequently, its l ower 
computational complexity. 

Wang and Quatieri have evaluated their model for pitch 
processing, s ince p itch i s an  es sential cu e for speech an d 
music p erception a nd s eparation. Mor eover, 
psychoacoustical and neurophysiological experiments show 
pitch processing m ainly a ppears i n t he c ortical s tage of 
several s pecies o f m ammals [32]. T hey i llustrated t he 
usability of their model in 1) m ulti-pitch estimation, 
especially in the case of two close pitch values and crossing 
trajectories [33], a nd 2) s peech s eparation using a -priori 
pitch estimates of individual speakers [34]. Furthermore, we 
in [35] indicated how harmonic magnitude suppression can 
be integrated with the localized spectrotemporal processing 
to separate voiced speech signals. 

Although the model is nicely fit for multi-pitch extraction 
via a  s pectrotemporal pr ocess mimicking t he primary 
auditory c ortex f unction, t he processing of pitch i n t he  
auditory c ortex of m ammals i s m uch s ophisticated, a nd 
requires higher-order cortical areas and interactions with the 
frontal cortex [32]. In fact, a fixed pitch seems to active the 
Heschl’s gyrus and the planum temporale. Moreover, when 
the pi tch i s varied t he a ctivation i s found i n t he regions 
beyond Heschl’s gyrus and p lanum temporale, specifically 
in t he s uperior t emporal gy rus a nd planum pol are [32]. 
Hence, t he m odel, l onely, i s t oo s implified t o be us ed f or 
CASA.  

 
(a) 

 
(b) 

Fig. 4. Different models of spectrotemporal analysis, mimicking the auditory cortical stage. (a) The model of the cortical stage presented by 
Chi et. al. in [27] (adapted from [30]). To analyze its spectrotemporal content, the auditory spectrogram is convolved with the STRFs of the 
cortical cells, g enerating t he t ime-frequency representation in di fferent s cales a nd ra tes (b)  T he l ocalized spectrotemporal a nalysis 
presented by Wang and Quatieri in [31]. Left figure is a patch of the conventional STFT spectrogram of a  harmonic signal, in which the 
parallel lines are the harmonics. The 2D Fourier transform of the parallel harmonic lines in the patch leads to two compressed points shown 
in the right figure, in which their vertical distance is related to the pitch value.  
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4.3. Future of the Cortical Models  
The t wo p revious m odels o f co rtical s tage ar e utilized f or 
sound separation in some experiments [7][35]. There should 
be other cortical models that are not necessarily utilized for 
this task yet. For example, since auditory and visual cortices 
are structurally similar, in addition to the mentioned studies, 
it i s w orth i t t o e valuate i f a  v isual c ortex model such as  
Neocognitron [36][37] or H MAX [38][39]  can b e 
customized f or a udio processing. S piritually s imilar, 
Neocognitron a nd H MAX are cortex-like m echanisms for 
visual object recognition. 

Moxham et. al. in [40] incorporated the Neocognitron for 
pitch es timation and voice detection. They emphasized the 
reliability o f the N eocognitron-based m ethod via s ome 
experiments a nd c omparison wi th t he e xisting m ethods. 
Yamauchi et.al. in [41] also employed the Neocognitron as 
the r ecognition m odule o f a  s peed i nvariant s peech 
recognizer, w hich b enefits from v elocity-controlled d elay 
lines. Both mentioned research may encourage customizing 
visual c ortex models f or m ore c omplicated a uditory t asks 
like source separation in the future.   

In some sense, models for visual cortex are more matured 
than the auditory co rtex. Nevertheless, i t i s not eas y t o 
develop a  c omprehensive model f or a uditory c ortex, 
especially b ecause o f t he s tochastic n ature an d t emporal 
dynamics of  s ound. M oreover, physiologically, t here ar e 
not many findings about h ow i ndividual c ortical a reas 
compute, t he nature o f t he out put from t hose a reas to 
cognitive and higher brain, as well as the interaction of the 
auditory cortex with other sensory areas, which is called the 
binding pr oblem in ne uroscience [17]. The p roblem t alks 
about how information is encoded in different areas of the 
brain bound together into a coherent whole. Hence, we need 
to consider a richer model of sound processing and auditory 
object recognition, especially in brain. 

5. Discussions and Future 
5.1. Binaural vs. Monaural models 
Human a uditory s ystem a s a r eference m odel i s s trongly 
capable o f s eparating s ound s ources employing either o ne 
or t wo e ars. H ence, t here a re t wo g roups of C ASA 
approaches depending o n t he n umber of available i nput 
mixtures. S pecifically, many speech s eparation and 
recognition approaches competed in the monaural challenge 
in Interspeech 2006 [11], and consequently, binaural 
solutions i n P ascal CH iME challenge i n Interspeech 201 1 
[42]. 

Nowadays, e quipping t wo m icrophones i n s ound 
separation p latforms, even cell p hone devices, is no t 
expensive or inaccessible demand. Hence, binaural methods 
can be feasibility utilized in practice. Indeed, the extraction 
of the spatial properties of the sources is an informative cue 
for separation in mammalian a uditory system and i s 
performed i n S OC u tilizing t he i nteraural difference 
information received from left and right cochlear nucleuses 
[43], which can be easily simulated in binaural methods.  

Despite various m echanisms ar e s uggested by bi naural 
CASA re searchers f or e xtraction of t he I TD, IL D, a nd 
interaural phase difference (IPD) [44], we would not ignore 
the remarkable monaural C ASA ap proaches. Certainly, 
monaural s ource s eparation i s t he e xtreme c ase of t he 
separation with respect to the number of available mixtures 
and i s a c hallenging t ask, especially when the n umber of  
sources i s m ore t han t wo. H armonicity, o nset/offset, 
amplitude modulation, frequency modulation, timbre and so 
on ar e t he dominant cu es usually co nsidered i n m onaural 
approaches [11]. Und oubtedly, in tegration o f t he a bove 
mentioned monaural cues and binaural cues (ITD, ILD and 
IPD) improves the performance of separation [45]. 

5.2. Integration of Bottom-Up and Top-Down 
Models 
The b ottom-up m odels us e i nformation f rom the s ound t o 
group components a nd understand an auditory scene. 
Except for information such as temporal change of pitch or 
onsets, t here i s l ittle h igh-level knowledge to gu ide t he 
scene analysis process. Instead, our brains seem to abstract 
sounds, and solve the auditory scene analysis problem using 
high-level r epresentations o f each auditory object. In f act, 
the cortical feedback in the auditory system exerts its effect 
all the way down to the outer hair cel ls in the cochlea v ia 
the m idbrain structure t o reinforce t he s ignal s tream of  
interest and maximize expectation through feedback [46].  
Although the physiological findings of the top-down 
process a re not m atured, in o rder to i mprove t he 
performance, the C ASA a pproaches g o t oward t he 
combination of low-level and high-level models. Generally, 
according to the literatures, the best example of a top-down 
auditory understanding system is a probabilistic model such 
as hidden M arkov m odel- (HMM-) b ased s peech 
recognition system; but nobody has evaluated the suitability 
of modeling human language perception with a HMM [47]. 
Srinivasan and Wang in [23] combined bottom-up and top-
down c ues i n order t o s imultaneously im prove b oth m ask 
estimation and recognition accuracy. They incorporated the 
top-down information in a  probabilistic model for missing 
data r ecognizer. S imilarly, Ba rker e t. a l. i ntroduced a 
speech f ragment de coding system i ntegrating data-driven 
techniques a nd m issing data techniques f or simultaneous 
speaker identification and speech recognition in presence of 
a competing speaker [24].  

Shao e t. a l. also e mployed a n uncertainty d ecoding 
technique as a top-down model for missing data recognition 
in the back end of a  two-stage segmentation and grouping 
CASA system [25]. On the other hand, in [10] the top-down 
integration i s c arried out by t raining G aussian m ixture 
models (GMMs) and vector quantizers (VQs) of t he 
isolated cl ean data f or eac h speaker, an d i ncorporating i n 
the bot tom-up s eparation process t hat i s b ased i n speaker 
identification. 

5.3. Recognition or Synthesizing 
Human auditory system isolates separate representations of 
each s ound o bject a nd ne ver t urns i t ba ck i nto sound. 
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Instead, it s eems more l ikely that the sound understanding 
and s ound s eparation occur i n c oncert, and t he br ain o nly 
understands t he c oncepts [47]. Human s ound s eparation 
work s hould not s trive t o ge nerate a coustic w aveforms of  
the separated signals. In [48], Stark et. al. investigated both 
strategies, designing a nd a pplying a  binary m ask on  t he 
spectrogram of  t he m ixture a nd s ynthesizing f rom t he 
estimated s peech features. In s imilar co nditions, t he t arget 
to masker ratio (TMR) results of the mask-based separation 
significantly o utperformed t he s ynthesized-based o ne. I n 
fact, the separated signals in time domain carry an 
additional noise following the synthesis process. Hence, in 
the l ast s tage of CA SA, recognition without s ynthesizing 
the separated signals not only is biologically plausible, but 
also shows dominant performance.  

5.4. CASA vs. BSS  
Using a  s tandard c orpus of vo iced s peech m ixed w ith 
interfering s ounds, Kouwe e t. a l. i n [49] have r eported a 
comparison between C ASA an d B SS t echniques, which 
have be en developed i ndependently. E ventually, t hey 
concluded that if the requirements, such as enough number 
of available mixtures and independency of the sources ar e 
met, BS S i s a  p owerful t echnique and p erforms precisely; 
but t he r equirements may not  be  e quitable w ith a  natural 
environment.  

On the ot her ha nd, i n t he natural e nvironment, CA SA 
brings the flexibility o f t he p hysiological s ystems w hich 
they model to bear on a variety of  s ignal mixtures, so that 
they can ach ieve a r easonable l evel o f s eparation i n t he 
absence of many of  the requirements of  BSS; but they are 
still weak in noisy conditions.  

The different performance profiles of the CASA and BSS 
techniques suggest that there would be merit in combining 
the t wo a pproaches. M ore s pecifically, s cene a nalysis 
heuristics t hat ar e em ployed b y C ASA s ystems ( such a s 
continuity of F0 and spatial location) could be exploited by 
BSS algorithms i n o rder t o i mprove t heir performance o n 
real-world a coustic m ixtures. Co nversely, b lind s eparation 
techniques could help CASA in decomposing mixtures that 
overlap s ubstantially i n t he t ime-frequency pl ane [49]. 
Moreover, CA SA s olutions c ome t o h elp BS S i n 
underdetermined c ondition when t he n umber of  s ources 
exceeds t he n umber of m ixtures. The r esearch in [48][50] 
are examples of  the br idge be tween underdetermined BSS 
and CASA.  

5.5. Phase Information 
According t o the l iteratures, magnitude s pectrum p lays a 
dominant r ole f or s ound processing. Although, a bout 1 50 
years ago, Ohm observed that the human auditory system is 
phase-deaf, r ecent s tudies s how t he i mportance of both 
phase a nd m agnitude o f t he s pectrogram [51]. H owever, 
traditionally, phase s howed n oise-like be havior, perhaps 
because of the low computational resolution. Nowadays, by 
increasing t he s peed a nd precision of t he pr ocessors, a 
growing gr oup of  sound pr ocessing r esearch is trying to 
investigate more features by the phase information [52-56].  

Utilizing p hase i nformation i s i nvestigated i n c omplex 
matrix f actorization ( CMF) f or s ource s eparation i n 
[57][58]; but t here is not enough r esearch in C ASA 
methods i n t his c ase. The r elationship of  the phase o f the 
harmonics introduced in [56] is a useful cue for multi-pitch 
extraction and may help separation of the harmonic signals 
that have overlap in some harmonics.  

6. Conclusion 
Physiological models of auditory scene analysis are still in 
their infancy. An efficient cortical model together with the 
higher brain i ncorporations is s till a n i nteresting r esearch 
topic i n t his f ield. M oreover, t he i ntegration of t op-down 
and b ottom-up pr ocessing i n AS A i s a n issue for fu ture 
work, as is the role of attention. In addition, most computer 
models of ASA assume that the listener and sound sources 
are s tatic. I n natural en vironments, s ound s ources m ove 
over time, and the listener is active; as a result, factors such 
as head movement and dynamic tracking of spatial location 
need t o be  a ccounted for i n m ore s ophisticated models. 
Eventually, c urrent CA SA m odels c annot deal w ith more-
than-two-source mixtures, efficiently. 
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2012 INNS Awards 
By Leonid Perlovsky, Ph.D. 
Chair of the Awards Committee of 
the INNS 
 
As t he c hair of t he A wards 
Committee of the INNS, I a m 
pleased and proud to  announce the 
recipients of t he 2 012 INNS 
Awards: 

2012 Hebb Award goes to:       Moshe Bar 
2012 Helmholtz Award goes to:  Kunihiko Fukushima 
2012 Gabor Award goes to:      Nikola Kasabov 
2012 INNS Young Investigator Awards go to: 

Sebastien Helie and Roman Ilin 

These awards w ere d ecided af ter careful deliberations by 
the Awards Committee and the Board of Governors. 

Moshe Bar, the Hebb Award recipient, is recognized for his 
long-standing contribution a nd a chievements i n biological 
and computational learning. 

 
LET’S CONGRATULATE THE AWARDEES! 
 
Moshe Bar 
Recipient of 2012 INNS Hebb 
Award  

Dr. B ar graduated B en-Gurion 
University in Israel in 1988 with a 
Bachelor o f S cience in 
Biomedical Engineering.  A fter 
graduating, Dr. Bar spent the next 
six y ears as  a m ember o f t he 
Israeli Air Force, during which time he began his Masters 
work i n C omputer S cience at  t he W eizmann I nstitute o f 
Science.  After completing his Masters education in 1994, 
he en tered a PhD program i n C ognitive N euroscience at 
the U niversity o f S outhern Ca lifornia, wh ere h e was 
awarded t he P sychology de partment’s ‘ Outstanding 
Doctoral T hesis Award’. He  c ompleted his pos t-doctoral 
fellowship at H arvard University i n Ca mbridge, 
Massachusetts i n 2000. S ince t his t ime h e h as been t he 
recipient o f m any distinguished aw ards an d r esearch 
grants i ncluding, M cDonnel-Pew Award i n Co gnitive 
Neuroscience, th e prestigious Mc Donnell F oundation’s 
21st C entury S cience I nitiative A ward, an d s everal 
Research A wards f rom t he N ational I nstitutes of H ealth 
and t he National S cience Foundation. H e has be en an 
Associate P rofessor i n b oth Psychiatry a nd Ra diology a t 
the Harvard Medical S chool a nd at  t he Martinos C enter 
for B iomedical I maging at M assachusetts G eneral 
Hospital in Boston, Massachusetts. 

 

 

Kunihiko F ukushima, t he H elmholtz Award re cipient, is 
recognized f or his m any ye ars of  c ontribution a nd 
achievements in understanding sensation/perception. 

Nikola Kasabov, the Gabor Award recipient, is recognized 
for hi s a chievements i n e ngineering/ application of  neural 
networks. 

Sebastien Helie a nd Ro man I lin, t he Young I nvestigator 
Award recipients, are recognized for significant 
contributions in  th e f ield of  Neural Networks by a  young 
person (with n o m ore t han f ive y ears postdoctoral 
experience and who are under forty years of age). 

These awards will be presented at IJCNN 2012 in Brisbane.                                         
■ 
 
 
 
 
 

 

 

 
His research interests encompass a wide-range of domains 
from e pisodic m emory a nd s patial c ognition, t o t he 
cognitive neuroscience o f major depression. Some of  the 
recent questions his l ab has a ddressed i nclude: c ognitive 
and cortical processes that underlie v isual awareness, the 
flow of information in the cortex during visual recognition, 
including t he mechanism a nd representations m ediating 
"vague-to-crisp" processes, c ontextual a ssociative 
processing of scene information, predictions in the brain, 
the processes and mechanisms mediating the formation of 
first i mpressions, t he v isual elements t hat determine o ur 
preference, and the implications of his research to clinical 
disorders.  
 
Kunihiko Fukushima  
Recipient of 2012 INNS 
Helmholtz Award 

Kunihiko Fukushima r eceived a  
B.Eng. degree i n el ectronics i n 
1958 a nd a  P hD degree i n 
electrical engineering i n 1966  
from Kyoto University, Japan. He 
w a s  a  p r o f e s s o r  a t  O s a k a 
University f rom 198 9 t o 1999, a t 
the U niversity of E lectro-Communications f rom 1999 t o 
2001, a t T okyo U niversity of  T echnology f rom 200 1 t o 
2006, and a  visiting p rofessor a t K ansai University f rom 
2006 to 2010. Prior to his professorship, he was a Senior  
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Research S cientist at  t he N HK S cience a nd T echnical 
Research Laboratories. He has now part-time positions at 
several l aboratories: S enior Research S cientist, Fuzzy 
Logic Systems Institute; Research Consultant, Laboratory 
for Neuroinformatics, RIKEN Brain Science Institute; and 
R e s e a r c h  S c i e n t i s t ,  K a n s a i  U n i v e r s i t y . 

He r eceived the A chievement A ward and Excellent 
Paper Awards from IEICE, the Neural Networks Pioneer 
Award f rom IE EE, APNNA O utstanding Achievement 
Award, Excellent Paper Award from JNNS, and so on. He 
was the founding President of JNNS (the Japanese Neural 
Network S ociety) a nd wa s a f ounding m ember o n t he 
Board of Governors of INNS. He is a former President of 
APNNA (the Asia-Pacific Neural Network Assembly). 

He is one of the pioneers in the field of neural networks 
and has been engaged in modeling neural networks of the 
brain since 1 965. His special i nterests l ie i n m odeling 
neural ne tworks of  the hi gher br ain f unctions, especially 
the mechanism of the visual system. In 1979, he invented 
an artificial neural network, "Neocognitron", which has a 
hierarchical m ultilayered ar chitecture a nd acq uires t he 
ability to r ecognize v isual patterns through l earning. The 
extension of t he neocognitron i s s till c ontinuing. B y t he 
introduction of  top -down c onnections a nd n ew le arning 
methods, va rious ki nds o f neural ne tworks have been 
developed. When t wo o r more p atterns ar e p resented 
simultaneously, t he " Selective Attention M odel" c an 
segment an d recognize i ndividual patterns i n t ern by 
switching i ts attention. E ven i f a  pattern i s p artially 
occluded by  o ther o bjects, we  h uman beings can of ten 
recognize the occluded pattern. An extended neocognitron 
can n ow ha ve such human-like a bility a nd c an, not only 
recognize oc cluded patterns, but  a lso r estore t hem by 
completing oc cluded c ontours. H e a lso de veloped neural 
network m odels f or e xtracting vi sual m otion a nd optic 
flow, for extracting symmetry axis, and many others. He is 
recently i nterested i n new learning rules for neural 
networks. He p roposed " winner-kill-loser" r ule f or 
competitive l earning. By  t he u se of t his r ule, a  high 
recognition rate can be obtained with a smaller scale of the 
network. H e also proposed a nd i s t rying to e xtend 
"interpolating vectors", which is a learning rule suited for 
training the highest stage of the neocognitron. 
 
Nikola Kasabov 
Recipient of 2012 INNS Gabor 
Award 

Nikola Kasabov, F IEEE, F RSNZ is 
the D irector of the K nowledge 
Engineering and D iscovery 
Research I nstitute (KEDRI), 
Auckland. He holds a Chair of 
Knowledge E ngineering a t the 
School of C omputing a nd M athematical S ciences at  
Auckland University o f T echnology. C urrently he  i s a n 
EU FP7 Marie Curie Visiting Professor at the Institute of 
Neuroinformatics, ETH and University of Zurich.  

Kasabov is a Past President of the International Neural 
Network S ociety ( INNS) a nd al so of t he A sia P acific 
Neural Network Assembly (APNNA). He is a member of 
several t echnical c ommittees o f IEEE Computational 
Intelligence S ociety and a D istinguished L ecturer o f t he 
IEEE C IS. He h as s erved a s A ssociate E ditor of Neural 
Networks, IEEE TrNN, IEEE TrFS, Information Science, 
J. T heoretical a nd Co mputational Nanosciences, Applied 
Soft Computing and other journals.  

Kasabov ho lds MS c and P hD f rom t he T echnical 
University of Sofia, Bulgaria. His main research interests 
are in the areas of neural networks, intelligent information 
systems, soft computing, bioinformatics, neuroinformatics. 
He has published more than 450 publications that include 
15 books, 130 journal papers, 60 book chapters, 28 patents 
and numerous c onference pa pers. H e ha s e xtensive 
academic ex perience at  various a cademic an d r esearch 
organisations in E urope a nd Asia. P rof. K asabov has 
received t he AUT V C I ndividual R esearch E xcellence 
Award ( 2010), B ayer S cience I nnovation Award ( 2007), 
the A PNNA Excellent S ervice A ward (2005), R SNZ 
Science and Technology Medal (2001), and others. He is 
an I nvited G uest P rofessor at t he S hanghai J iao T ong 
University ( 2010-2012). Mo re information of P rof. 
Kasabov can be f ound o n the K EDRI w eb site: 
http://www.kedri.info. 
 
Sebastien Helie  
Recipient of 2012 INNS Young 
Investigator Award 

Sebastien Helie is a Researcher in 
the D epartment o f P sychological 
& B rain Sciences at  t he 
University of California, Santa 
Barbara. P rior t o filling t his 
position, he  was a  p ostdoctoral 
fellow a nd a djunct professor i n t he C ognitive S cience 
Department at the Rensselaer Polytechnic Institute (2006-
2008). Dr. Helie completed a Ph.D. in cognitive computer 
science at  t he U niversite du Q uebec A Montreal, an d 
graduate ( M.Sc.) a nd undergraduate ( B.Sc.) degrees i n 
psychology at the Universite de Montreal.  

His research i nterests ar e related t o neuroscience a nd 
psychological modeling in general and more precisely t o 
computational c ognitive n euroscience, c ognitive 
neuroscience, categorization, au tomaticity, r ule l earning, 
sequence learning, skill acquisition, and creative problem 
solving. D r. Helie ha s published 1 5 a rticles i n pe er-
reviewed journals, 17 articles in peer-reviewed conference 
proceedings, and 2 book chapters. He regularly serves on 
the p rogram c ommittee o f t he Annual C onference o f t he 
Cognitive S cience S ociety a nd t he I nternational J oint 
Conference i n N eural N etworks. D r. H elie h as al so 
chaired m any t utorials o n t he CL ARION c ognitive 
architecture  presented at various international 
conferences. 
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Roman Ilin 
Recipient of 2012 INNS Young 
Investigator Award 
Roman Ilin is a research scientist a t 
the A ir F orce R esearch L aboratory, 
Wright P atterson Air F orce Ba se, 
OH.  H e r eceived h is d octorate 
degree i n C omputer S cience from 
the  Un ive rs i ty  o f  M emph is , 
Memphis, T N, in 2008 .  His 
graduate r esearch f ocused on s everal ar eas including 
computational ne urodynamics, w here he investigated  

 
INNS AWARD ACCEPTANCE STATEMENT: 
Moshe Bar - INNS Hebb Awardee  

It is an honor to receive this year’s INNS Hebb award. The 
Hebb Award recognizes achievement in biological learning. 
Over the p ast several d ecades, there h as b een increasing 
recognition t hat t he brain i s n ot s imply a  pa ssive 
information-processing device t hat o perates o n i ncoming 
stimuli and generates output. Rather, the brain is proactive, 
constantly ge nerating p redictions a bout what t o e xpect 
which guide perception and other cognitive processes. The 
ability o f t he b rain t o generate t hese p redictions is 
dependant on experience; we encode statistical regularities 
in t he w orld over t ime. T hus, l earning e ngenders 
predictions, a nd p redictions a re i n t urn a  f undamental 
operating principle i n t he brain.  Work i n m y l ab ha s 
focused o n t he ki nds of predictions t hat t he b rain m akes 
during visual pe rception a nd how t hese pr ocesses ar e 
instantiated in the brain. A large portion of my research has 
so far focused on two specific predictive systems: 

I. A c ortical context ne twork s upports t he p roduction of 
contextual predictions 

Contextual learning i s a  r ich source of information for the 
predictive brain. When e ntering a n o ffice, f or e xample, 
many previous encounters with offices (or images of offices) 
have taught us t o expect computers, desks, a nd fax 
machines. I n t he 1970s, s eparate s tudies by Ivring 
Biederman and Steven Palmer showed that subjects identify 
target objects faster and more accurately when the target is 
located i n a n a ppropriate c ontext rather t han i n a n 
inappropriate one . T hese r esults s uggest t hat c ontextual 
information may sensitize the representations of associated 
objects, facilitating their recognition.  

The brain areas underlying this facilitation, however, have 
only recently been revealed. Work from my lab has shown 
that images of objects strongly associated with a particular 
context (e.g. golf cart, roulette wheel) elicit greater activity 
in a  ne twork of c ortical r egions t han do objects w eakly 
associated with any particular context (e.g., a pen).  These 
regions a re: p arahippocampal co rtex (PHC), r etrosplenial 
complex ( RSC), a nd ventromedial pr efrontal c ortex 
(vmPFC). Furthermore, t emporally s ensitive m agneto-
encephalography t echniques ha ve shown that t he r egions 
within this network begin to synchronize as early as 150 ms 
 

population l evel neural m odels, a pproximate dynamic 
programming, and text document clustering.  

Before j oining AFRL, h e w orked as an N RC research 
associate at  AFRL, Hanscom Air Force Base, MA.  His 
postdoctoral w ork focused on de veloping c ognitive 
dynamic l ogic b ased algorithms f or t arget detection, 
tracking, a nd s ituation l earning. He  a uthored 1 9 
publications. His c urrent research i nterests i nclude 
cognitive a lgorithms f or a utomatic s ituation a ssessment, 
target t racking a nd c haracterization, m ulti-sensor da ta 
fusion, optimal control, reinforcement learning, and neural 
networks. 

 
post-stimulus. T his e arly synchronization suggests t hat 
contextual information i s indeed activated early enough to 
facilitate recognition. Futher studies will c larify how these 
regions encode contextual regularities over time.  

II. Global i nformation based on l ow s pecial f requencies 
facilitates predictions  

Even with t he a id of c ontextual l earning, vision i s a  
remarkable f eat.  Consider a  dr iver who turns a  corner to 
face a deer s tanding i n t he r oad. Within s econds, t he 
driver’s brain transforms t he el ectrical s ignals l eaving t he 
retina into a 3D representation of the ‘object’ in the middle 
of t he road, m atches t his percept with a  representation i n 
memory i dentifying t his o bject a s a  ‘ deer’, a nd c omputes 
the necessary m otor m ovements n ecessary to a void 
collision.  

I ha ve proposed t hat t he e fficiency of  vision i s d ue, i n 
part, t o a  co rtical mechanism that m akes u se o f l earned 
global object properties to facilitate recognition. In brief, a 
low s pecial f requency ( LSF) r epresentation of a n i mage 
(essentially a  b lurred version of t he i nput) i s projected 
rapidly f rom early vi sual c ortex t o orbitofrontal c ortex 
(OFC) via t he d orsal m agnocellular p athway. T his co arse 
representation, d espite l acking f ine d etail, co nveys 
sufficient g ross d etail t o act ivate a n umber o f can didate 
objects based on learning. For example, from experience it 
is clear that a thin cylinder might be a pen or a laser pointer, 
but n ot a  c omputer m ouse. T hese p redictions m ay t hen 
constrain the s lower, more detail oriented processes taking 
place i n t he v entral visual s tream. S tudies in m y l ab have 
accrued significant support for this model, including but not 
limited t o t he f indings t hat 1)  L SF i nformation 
preferentially activates OFC 2) LSF stimuli elicit synchrony 
across e arly visual c ortex, OFC, a nd v entral ar eas, a nd 3) 
orbitofrontal activity e licited b y object s timuli d esigned to 
excite magnocellular cells predicts faster recognition.  

I b elieve t hat t he s trength a nd e fficiency o f t hese t wo 
anticipatory systems s uggests t hat p redictions m ay b e a  
universal principal i n t he operation of t he br ain.  Future 
research exploring predictive processes outside the realm of 
vision holds great promise. 
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INNS AWARD ACCEPTANCE STATEMENT: 
Kunihiko Fukushima - INNS Helmholtz Awardee  

It i s a  g reat pleasure a nd honor t o receive the p restigious 
Helmholtz A ward, which r ecognizes ach ievement i n 
sensation/perception. 

I ha ve be en wo rking modeling ne ural networks since 
around 1965. At that time, I was working for NHK (Japan 
Broadcasting Corporation), and I  j oined t he B roadcasting 
Science R esearch L aboratories, which w as newly 
established in NHK. In the laboratory, there were groups of 
engineers, neurophysiologists and p sychologist, w orking 
together t o discover t he m echanism of  the vi sual a nd 
auditory s ystems of  t he br ain. I  was fascinated by  the 
neurophysiological f indings on the visual systems, such as 
the o nes by Hubel a nd Wiesel, a nd s tarted c onstructing 
neural network models of the visual system. 

Since then, I  ha ve be en w orking on  modeling ne ural 
networks for higher brain functions. In 1975, I  proposed a 
multi-layered ne twork, " cognitron". T he c ognitron has a 
function o f self-organization a nd a cquires a n a bility t o 
recognize patterns through learning. In 1979, the cognitron 
was extended to have a function of recognizing shifted and 
deformed vi sual pa tterns robustly. T he new m odel w as 
named "neocognitron". 

After t hat, the id ea of the n eocognitron h as b een 
extended in  various directions. B y i ntroducing top -down 
signal paths, I p roposed a  model t hat ha s a  f unction of 
selective attention. The model focuses its attention to one of 
the o bjects i n t he visual f ield, an d recognizes i t by 
segmenting i t f rom ot her o bjects. As a pplications of t he 
model, va rious s ystems ha ve be en developed: s uch a s, a 
network extracting a face and i ts parts from a co mplicated 
visual scene, a  system recognizing connected characters in 
English words, a model for the mechanism of binding form 
and motion, and many others. 

I also proposed neural networks extracting symmetry axis, 
extracting optic f low, r ecognizing a nd r estoring p artly 
occluded patterns, extracting binocular parallax, associative 
memory for spatio-temporal patterns, and so on. 

One of m y r ecent i nterests resides i n de veloping new 
learning a lgorithms for multi-layered neural networks. 
Using n ew le arning m ethods, I a m t rying to i mprove t he 
recognition r ate of  t he neocognitron, a nd simplifying t he 
designing process of the network. 

Many s cientists a nd e ngineers a re now working f or 
modeling ne ural ne tworks. The a bility of  ne ural ne twork 
models is increasing rapidly but is still far from that of the 
human brain. It is my dream that neural networks for higher 
brain functions be  modeled from va rious a spects, and that 
systems much more like human brain be developed. 
 
INNS AWARD ACCEPTANCE STATEMENT: 
Nikola Kasabov - INNS Gabor Awardee  

It is my great honor to receive the top INNS Gabor Award 
for E ngineering A pplications of Neural Ne tworks. I  
consider my contribution mainly in two directions: (1) the 
development of both generic a nd a pplied m ethods a nd 
systems that lead to a better quality of information 

processing a nd k nowledge di scovery a cross a pplication 
areas; (2) dissemination of knowledge.  

The d istinctive f eature o f my r esearch i s t he i ntegration 
of pr inciples of information processing inspired by  na ture. 
In t he l ate 1 970s I  i ntroduced methods f or the de sign o f 
novel parallel c omputational a rchitectures u tilizing 
algebraic t heory o f t ransformational g roups an d s emi-
groups. Later I introduced a hybrid connections production 
rule-based model and developed connectionist-based expert 
systems.  

However, my major contribution began when I integrated 
connectionist a nd fuzzy l ogic p rinciples i nto efficient 
neuro-fuzzy k nowledge ba sed models. T he  monograph 
book “ Foundations of neural ne tworks, f uzzy s ystems a nd 
knowledge e ngineering”, M IT P ress 1996, pr oposed too ls 
and techniques a long with the ir applications go ing beyond 
usual neuro-fuzzy models of that time.    

In t he l ate 1 990s I de veloped a nd p ublished s everal 
neuro-fuzzy s elf-adapting, e volving models, s uch as 
Evolving F uzzy N eural N etwork (EFuNN, 2001) a nd 
DENFIS ( 2002). T hese m ethods p rovide a  r emarkable 
additional value i n e ffectiveness a nd e fficiency. The m ain 
methods o f e volving c onnectionist s ystems ( ECOS) a nd 
their a pplications were published in a  m onograph book 
“Evolving c onnectionist systems”, Springer 2 003 ( second 
edition, 2007).  

I a lso developed a series of n ovel m ethods f or 
transductive reasoning for personalised modelling that 
created n ew opportunities for the ap plication o f 
computational intelligence to personalized medicine.    
Recently I proposed novel evolving spiking neural networks 
(eSNN) w ith applications for spatio- and spectro t emporal 
pattern r ecognition, m ultimodal a udiovisual i nformation 
processing, t aste r ecognition ( Proc. ICONIP 2 007-2011; 
IEEE WCCI, 2010; Neural Networks 2010). The proposed 
computational ne uro-genetic models for br ain da ta 
modeling a nd e ngineering applications i ntegrated for t he 
first t ime p rinciples f rom g enetics a nd n euronal a ctivities 
into m ore e fficient s piking neural m odels (another 
monograph book by S pringer, 200 7 a nd a  p aper i n IEEE 
TAMD 2011). A method to integrate a brain gene ontology 
system with evolving connectionist systems to enhance the 
brain knowledge discovery was also proposed.   

Integrative c onnectionist-, g enetic- and q uantum- 
inspired m ethods o f c omputational i ntelligence i s a lso a  
topic of  m y in terest a nd r esearch. In 2009  a  qu antum 
inspired evolutionary computation method is proposed and 
proved that it belongs to the class of probability estimation 
of di stribution a lgorithms ( IEEE Transactions o f 
Evolutionary Computation, 2009). T his e arly s tage w ork 
suggests a way for the integration of neuronal- and quantum 
principles with t he probability t heory f or t he development 
of principally new algorithms and machines, exponentially 
faster and more accurate than the traditional ones. 

I have developed some practical engineering applications 
with the use of the introduced generic methods, to mention 
only s ome of  them: ne uro-fuzzy methods a nd s ystems f or 
speech a nd i mage an alysis; i ntegrated m ethods for t ime 
series prediction; pe rsonalised m edical d ecision support 



 

Volume 1, Issue 2, Winter 2012 63 Natural Intelligence: the INNS Magazine 

systems; c onnectionist-based m odels for bioinformatics 
gene a nd protein da ta a nalysis; methods f or cancer drug 
target di scovery; ecological da ta modeling; 
neuroinformatics and brain data analysis.   
 
INNS AWARD ACCEPTANCE STATEMENT: 
Roman Ilin - INNS Young Investigator Awardee  

I would like to thank the INNS Awards Committee for this 
award. I wa nted t o use t his op portunity a nd t o t hank Dr. 
Robert K ozma, w ho s erved a s m y P h.D. a dviser at  t he 
University of Memphis and Dr. Leonid Perlovsky, who was 
my p ostdoctoral ad viser a t t he A ir F orce R esearch 
Laboratory and i s my current research collaborator, for a ll 
the valuable guidance and support that I received from them 
over th e ye ars of  m y graduate a nd p ostgraduate s tudies. I 
would a lso l ike t o t hank m y w ife, Victoria f or g iving m e 
inspiration, s upport a nd e ncouragement o ver t he pa st 13 
years. 

My recent and current research interests can be divided in 
three categories.  

(1) Computational Neurodynamics 

I have been investigating, through computational modeling, 
the properties of K-sets named after Dr. Aharon Katchalsky, 
and utilized i n t he c haotic brain t heory a dvocated by Dr. 
Walter J. Freeman. K sets is a hierarchical family of models 
describing a population of about 10,000 cortical neurons at 
the lowest level and the whole brain at the top level. On the 
higher hi erarchical l evel t hese m odels p erform p attern 
classification t asks a nd m ulti-sensory pr ocessing a nd t hus 
can be applied to adaptive control problem. The K sets are 
described by  nonlinearly coupled second order di fferential 
equations. T he s ystem c ontains h undreds of  independent 
parameters which affect its dynamic properties. I conducted 
analytical a nd numerical s tudies t o identify s tructural 
stability regions of the K sets and various bifurcation types 
occurring i n t he b orders be tween s tability r egions. S uch 
studies contribute to the understanding of mechanisms used 
to generate the aperiodic background activity of  the b rain. 
The results have been used to design a simple K model with 
chaotic switching between several attractor regions.   

(2) Approximate Dynamic Programming 

This s tudy c oncerned t he Model-Action-Critic n etworks 
advocated by  Dr . P aul W erbos, and us ed for control o f 
autonomous a gents. T he Critic ne twork i s t he m ost 
challenging part of the control as it has to approximate the 
long t erm u tility f unction, which i s t he solution of t he 
Bellman e quation. T he B ellman e quation gives t he e xact 
solution t o t he problem however i ts c omputational 
complexity grows exponentially with t he num ber o f 
possible s tates of  t he a gent/environment s ystem, a nd i t i s 
known th at t he b rain does not s olve e quations. T he brain 
approximates solutions of the Bellman equation and this is 
what a n a rtificial n eural n etwork i s c hallenged t o do. 
Studies ha ve be en d one to s olve a ge neralized 2D maze 
navigation p roblem us ing a  new t ype o f neural n etwork, 
called Ce llular S imultaneous Re current Network (CSRN). 

This task could not be solved by a feed forward network in 
the previous studies. Due to the size of the CSRN network 
and i ts recurrent nature t he s tandard b ack propagation 
learning is inefficient. The more efficient Extended Kalman 
Filtering (EKF) has been applied to the network to speed up 
the l earning b y t he order of a mplitude. T he results s how 
that this network is capable of learning the long term utility 
function for the case of 2D navigation. 

(3) Dynamic Logic   

Dynamic L ogic i s a  c ognitively i nspired mathematics 
framework based on current understanding of how the bran 
processes i nformation i n ef ficient way. Its main f eature i s 
the process of t ransition f rom va gue t o c risp data 
associations a nd parameter va lues.  T his a lgorithm ha s 
been successfully applied in the context of multiple targets 
tracking with radar sensors.  I conducted successful studies 
to extend this method to tracking with optical sensors, and 
to t he t ask of s ituation recognition.  M y current r esearch 
continues a long t he lines o f i nvestigating t he use of 
Dynamic L ogic a nd o ther c omputational i ntelligence 
techniques for s olving challenging r eal world p roblems i n 
the areas of tracking and data fusion.   
 
INNS AWARD ACCEPTANCE STATEMENT: 
Sebastien Helie - INNS Young Investigator Awardee  

It is with great pride and honor that I accept the 2012 INNS 
Young I nvestigator A ward. I  w ould l ike t o t hank P rof. 
Denis C ousineau f or i ntroducing m e t o f undamental 
research, Prof. Robert P roulx for introducing me to neural 
network research, Prof. Ron Sun for introducing me to the 
INNS, and P rof. F. Gre gory As hby f or furthering my 
interest in computational cognitive neuroscience. 

My research over the last f ive years has mainly focused 
on t he i nteraction b etween e xplicit (e.g., r ule-based) a nd 
implicit (e.g., procedural) processing in psychological tasks 
using artificial n eural networks. This research led to 
contributions i n t hree different re search a reas: (1) 
perceptual cat egorization, (2) s equence l earning, a nd (3) 
creative problem solving. 

(1) Categorization 

My research on the cognitive neuroscience of categorization 
involves b oth e mpirical research ( e.g., be havioral, fMRI, 
genetics) a nd ne ural network m odeling. M y m odeling 
research has focused on the role of  dopamine in early and 
late perceptual categorization performance as a f unction of 
category structure. This research led to the development of 
neural network m odels of positive a ffect, P arkinson’s 
disease, and rule-based automaticity. 

(2) Sequence learning 

My research o n s equence l earning is f ocused o n the 
development of e xplicit k nowledge d uring pr ocedural 
learning, a s w ell a s t he d evelopment o f a utomaticity i n 
sequence l earning. T his r esearch ha s pr oduced a  ne ural 
network model that has been used to model the emergence 
of e xplicit know ledge f rom pr ocedural p rocessing a nd 
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another, m ore bi ologically-detailed, neurocomputational 
model of automatic motor sequence processing. 

(3) Creative problem solving 

My research on creative problem solving has focused on the 
development of an integrative framework called the Explicit 
-Implicit I nteraction ( EII) the ory of  c reative pr oblem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Photo at the Board of Governors meeting on Nov. 7, 2011 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
solving. I mplicit pr ocessing, r eferred t o a s ‘ incubation’, 
plays a  key r ole i n t he t heory. E II i s one of t he first 
psychological th eory of c reative p roblem s olving t o b e 
formulated w ith s ufficient precision t o a llow for a  n eural 
network implementation based on the CLARION cognitive 
architecture. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

2012 INNS New Members at the Board of Governors 
By Ron Sun 
President of INNS 
 
It is my pleasure to announce the result of the recent INNS Board of Governors election. 
 
Those elected to the BoG for the 2012-2014 term are: 
 

Soo-Young Lee 
Asim Roy 
Jacek Zurada 
Kumar Vengayamoorthy 
Peter Erdi 
Hava Siegelmann 

 

Also, Danil Prokhorov has been confirmed as President-elect for 2012. 
 

Please join me in congratulating them. Thank you all for participating in the vote. 
 

My thanks go to the nomination committee, especially Carlo Francesco Morabito.                                   ■ 
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IJCNN2012 
2012 International Joint Conference on Neural 
Networks 
June 10-15, 2012, Brisbane, Australia 
Call for Abstracts: Neuroscience & Neurocognition  
 
Following t he successful ex perience o f I JCNN11, ab stract 
submissions a re i nvited for a  s pecial Neuroscience and 
Neurocognition Track at I JCNN 2012. A bstracts must 
focus on a reas br oadly r elated to n eurobiology, c ognitive 
science and systems biology, including - but not limited to - 
the following: 

• Theory & models of biological neural networks. 
• Computational neuroscience.  
• Computational models of perception, cognition and behavior. 
• Models of learning and memory in the brain. 
• Brain-machine interfaces and neural prostheses. 
• Brain-inspired cognitive models. 
• Neuroinformatics. 
• Neuroevolution and development. 
• Models of neurological diseases and treatments. 
• Systems and computational biology 

Recognizing that some of the most exciting current research 
in neural networks is being done by researchers in 
neuroscience, psychology, c ognitive s cience, a nd s ystems 
biology, the abstracts program seeks participation from the 
broader community of  scientists in these a reas by  of fering 
an acces sible f orum for the i nterdisciplinary e xchange of 
ideas. I t will also p rovide researchers - especially doctoral 
students and p ostdocs - with a n opp ortunity to  s howcase 
ongoing research in advance of its publication in journals.    

Abstracts m ust be  no l onger t han 500 words plus a s 
many as 4 bibliographic citations. No figures or tables can 
be i ncluded. Abstracts s hould be submitted t hrough t he 
IJCNN 2012 online submission system.   

Unlike full papers, a bstracts w ill r eceive only l imited 
review t o e nsure t heir a ppropriateness f or IJCNN a nd 
consistency w ith t he f ocus ar eas o f t he ab stracts p rogram. 
Authors o f ac cepted a bstracts will b e g uaranteed a  p oster 
presentation a t t he conference a fter r egular r egistration. 
Abstracts w ill not  be  i ncluded i n the c onference 
proceedings, bu t w ill be published in t he I JCNN 2012 
program ( including t he printed c onference bo ok) a nd on-
line at the IJCNN 2012 web site along with abstracts of all 
presentations.  

Important Due Dates 
Abstract Submission :  March 15, 2012 
Decision Notification :  March 20, 2012 
Final Submission :  April 2, 2012 

For IJCNN inquiries please contact Conference Chair: 
Cesare Alippi at cesare.alippi@polimi.it 

For Neuroscience-track inquiries please contact The 
Neuroscience liaison: Ali Minai at minaiaa@gmail.com 

WIRN 2012  
22nd Italian Workshop on Neural Networks 
May 17-19, Vietri sul Mare, Salerno, Italy 
 

 
 
The I talian Workshop on Neural N etworks (WIRN) is the 
annual conference of the Italian Society of Neural Networks 
(SIREN). The c onference i s o rganized, s ince 1989, in c o-
operation w ith the International I nstitute for A dvanced 
Scientific S tudies ( IIASS) of V ietri S /M (Italy), a nd i s a  
traditional event devoted to the discussion of novelties and 
innovations r elated t o f ield o f Artificial N eural Networks. 
In recent years, it also became a multidisciplinary forum on 
psychological a nd cognitive t heories f or m odelling human 
behaviors. The 2 2nd E dition of  th e I talian Workshop on 
Neural Networks (WIRN 2012) will be held at the IIASS of 
Vietri sul Mare, near Salerno, Italy. 

Call for Papers and Special Session Proposals  
Prospective a uthors a re i nvited t o c ontribute high q uality 
papers i n t he t opic a reas l isted be low a nd pr oposals f or 
special s essions. S pecial s essions ai m t o bring tog ether 
researchers i n special f ocused t opics. E ach s pecial s ession 
should include at least 3 contributing papers. A proposal for 
a s pecial s ession s hould i nclude a summary s tatement ( 1 
page l ong) describing t he motivation a nd r elevance o f t he 
proposed special session, together with the article titles and 
author names of the papers that will be included in the track. 
Contributions should be  hi gh q uality, or iginal a nd not 
published elsewhere or submitted for publication during the 
review period. Please visit the web site for further details of 
the r equired paper format. P apers will b e r eviewed b y t he 
Program Committee, and may be accepted for oral or poster 
presentation. A ll contributions w ill be pu blished in a  
proceeding volume by IOS Press. Authors will be limited to 
one p aper p er r egistration. The s ubmission o f t he 
manuscripts should be done through the following website 
(page limit: 8 pages): 
https://www.easychair.org/conferences/?conf=wirn2012 
 

Call for Papers 
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Topic Areas  
Suggested t opics f or t he c onference i nclude, b ut a re not 
limited to, the following research and application areas: 
General T opics of  I nterest about C omputational 
Intelligence: Neural N etworks, F uzzy Systems, 
Evolutionary Computation and Swarm Intelligence, Support 
Vector Machines, Complex Networks, Bayesian and Kernel 
Networks, C onsciousness a nd M odels of  E motion 
Cognitive and Psychological Models of Human Behavior 
Algorithms &  A rchitectures: ICA a nd B SS, Opportunist 
Networks, M etabolic N etworks, Bi o-inspired N eural 
Networks, Wavelet Neural N etworks, I ntelligent 
Algorithms for Signal (Speech, Faces, Gestures, Gaze, etc) 
Processing and Recognition, and others 
Implementations: Hardware I mplementations and 
Embedded Systems, Neuromorphic Circuits and Hardware, 
Spike-based VLSI N Ns, I ntelligent I nteractive D ialogue 
Systems, Embodied Conversational Agents, and others 
Applications: Finance a nd Economics, N euroinformatics 
and Bioinformatics, Brain-Computer Interface and Systems, 
Data F usion, T ime S eries Modelling a nd P rediction, 
Intelligent I nfrastructure and T ransportation Systems, 
Sensors a nd Network of S ensors, P rocess Monitoring a nd 
Diagnosis, I ntelligent and A daptive Systems for H uman-
Machine Interaction, and others. 

CALL FOR PROF. EDUARDO R. CAIANIELLO  
Ph.D. THESIS PRIZE 

During the Workshop the "Premio E.R. Caianiello" will be 
assigned to the best Italian Ph.D. thesis in the area of Neural 
Networks and related fields. The prize consists in a diploma 
and a 800,00 € check. Interested applicants must send their 
CV a nd t hesis i n pdf format t o “ Premio Ca ianiello-WIRN 
2012” c/o I IASS b efore A pril 20, 2012 t o t he a ddresses 
(wirn2012@associazionesiren.org, i iass.segreteria@tin.it). 
To p articipate, the P h.D. degree ha s t o be o btained a fter 
January 1, 20 09 a nd before M arch 3 1, 2012. A c andidate 
can submit h is/her Ph.D. thesis t o the p rize a t most twice. 
Only SIREN members are admitted (subscription forms can 
be downloaded f rom t he S IREN we b site). F or m ore 
information, c ontact t he co nference S ecretary at  I.I.A.S.S. 
"E. R. Caianiello", Via G. Pellegrino, 19, 84019 Vietri Sul 
Mare (SA), ITALY. 

Important Dates 
Special Session/Workshop proposals: February 19, 2012 
Paper Submission: March 25, 2012 
Notification of acceptance: April 29, 2012 
Camera-ready copy: on site, May 17, 2012 

 

 

 

 

 

Chair: 
Francesco Carlo Morabito 

Co-Chair: 
Simone Bassis 

STEERING COMMITTEE SIREN 
Bruno Apolloni, Universita di Milano 
Simone Bassis, Universita di Milano 
Anna Esposito, Seconda Universita di Napoli 
Francesco Masulli, Universita di Genova 
Francesco Ca rlo M orabito, Universita Mediterranea d i 

Reggio Calabria 
Francesco Palmieri, Seconda Universita di Napoli 
Eros Pasero, Politecnico di Torino 
Stefano Squartini, Universita Politecnica delle Marche 
Roberto Tagliaferri, Universita di Salerno 
Aurelio Uncini, Universita di Roma “La Sapienza” 
Salvatore Vitabile, Universita di Palermo 

INTERNATIONAL 
ADVISORY COMMITTEE SIREN 

Metin Akay, Arizona State University 
Pierre Baldi, University of California in Irvine 
Piero P. Bonissone, Computing and Decision Sciences 
Leon O. Chua, University of California at Berkeley 
Jaime Gil-Lafuente, University of Barcelona, Spain 
Giacomo Indiveri, Institute of Neuroinformatics, Zurich 
Nikola Kasabov, Auckland University of Technology, New 

Zealand 
Vera Kurkova, Academy of Sciences, Czech Republic 
Shoji Makino, NTT Communication Science Laboratories 
Dominic Palmer-Brown, London Metropolitan University 
Witold Pedrycz, University of Alberta, Canada 
Harold H . Szu, Army Night Vision E lectronic S ensing 

Directory 
Jose Principe, University of Florida at Gainesville, USA 
John G. Taylor, King's College London 
Alessandro Villa, Universita Joseph Fourier, Grenoble 1, 

France 
Fredric M. Ham, Florida Institute of Technology 
 

Papers s ubmitted c ould be a lso s ent by e lectronic m ail t o 
the address: wirn2012@associazionesiren.org 
 

 
 

mailto:wirn2012@associazionesiren.org�

	Paper_HSzu.pdf
	Abstract
	Based on Natural Intelligence (NI) knowledge, our goal is to improve smartphone imaging and communication capabilities to resemble human sensory systems.  We propose adding an enhanced night imaging capability on the same focal plane array (FPA), thus...
	Keywords: Unsupervised Learning, Compressive Sensing, HVS, Smartphone, Fault Tolerance, Subspace Generalization, Medical Image, Face Identification.
	1. Introduction to Compressive Sensing and Natural Intelligence Technologies
	Harold Szu
	Catholic University of America
	szuharoldh@gmail.com
	,𝑅-𝑁. ,𝑋.=,𝑛=1-𝑁-,𝑠-𝑛.,𝜓-𝑛.=,,𝑛-𝑘.=1-𝑘-,𝑠-,𝑛-𝑘..,𝜓-,𝑛-𝑘....=,Ψ.,    (10)

	Paper_NKasabov.pdf
	Abstract
	Keywords: Spatio-temporal data, spectro-temporal data, pattern recognition, spiking neural networks, gene regulatory networks, computational neuro-genetic modeling, probabilistic modeling, personalized modelling; EEG data.
	Nikola Kasabov, FIEEE, FRSNZ
	Knowledge Engineering and Discovery Research Institute - KEDRI, Auckland University of Technology,
	and Institute for Neuroinformatics - INI, ETH and University of Zurich
	nkasabov@aut.ac.nz; www.kedri.info, ncs.ethz.ch/projects/evospike

	Paper_MLee.pdf
	Abstract
	Keywords: Selective attention, bottom-up attention, GFTART
	Acknowledgment
	References

	Minho Lee
	Kyungpook National University, Korea
	*corresponding author: mholee@knu.ac.kr

	Paper_ARabiee.pdf
	Abstract
	This review presents an overview of computational auditory scene analysis (CASA), as biologically inspired approaches for machine sound separation. In this review, we address human auditory system containing early auditory stage, binaural combining, c...
	Keywords: Auditory model, CASA, auditory scene analysis
	Acknowledgment
	S.Y. Lee was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2009-0092812 and 2010-0028722).
	References


	News.pdf
	/2012 INNS Awards

	CFPs.pdf
	2012 International Joint Conference on Neural Networks
	Call for Abstracts: Neuroscience & Neurocognition
	Important Due Dates




