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Abstract—The quantum-inspired evolutionary algorithm (QEA)
applies several quantum computing principles to solve optimiza-
tion problems. In QEA, a population of probabilistic models of
promising solutions is used to guide further exploration of the
search space. This paper clearly establishes that QEA is an original
algorithm that belongs to the class of estimation of distribution
algorithms (EDAs), while the common points and specifics of
QEA compared to other EDAs are highlighted. The behavior of
a versatile QEA relatively to three classical EDAs is extensively
studied and comparatively good results are reported in terms of
loss of diversity, scalability, solution quality, and robustness to
fitness noise. To better understand QEA, two main advantages of
the multimodel approach are analyzed in details. First, it is shown
that QEA can dynamically adapt the learning speed leading to a
smooth and robust convergence behavior. Second, we demonstrate
that QEA manipulates more complex distributions of solutions
than with a single model approach leading to more efficient
optimization of problems with interacting variables.

Index Terms—Coarse grained algorithm, optimization, proba-
bilistic models, quantum computing.

I. INTRODUCTION

UMEROUS natural and physical real world processes
N have recently inspired researchers in various domains
of artificial intelligence, such as neurocomputing, artificial
evolution, ant colony optimization, or simulated annealing,
to name a few. The use of metaphoric comparisons is a clear
trend of nowadays, especially for search and optimization
algorithms. Nevertheless, the metaphor cannot last too long
without a strong theoretical justification.

Quantum physics and quantum computing principles have
also been widely seen as a source of inspiration, for example in
neural networks [1], genetic algorithms [2], differential evolu-
tion [3], artificial immune systems [4], and particle swarm opti-
mization [5]. In the field of evolutionary computation the intro-
duction of the quantum-inspired evolutionary algorithms (QEA)
by Han and Kim might be the most successful application of the
quantum metaphor [6]-[8]. It has been earlier alluded that QEA
is related to estimation of distribution algorithms (EDAs) [9],
[10]. The first aim of this paper is to integrate in a more system-
atical way QEA into the class of EDAs as an original algorithm.
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EDAs have shown their ability to avoid the disruptive effects
of genetic operators in evolutionary algorithms (EA), namely
crossover and mutation, by iteratively evolving a probabilistic
model to explore the search space. Three different classes of
EDAs have been proposed, which categorizes these algorithms
according to the modeling of interaction between variables of
optimization problems [11], see also [12] for an overview of pro-
posed EDAs for each class. Early EDAs assume independent re-
lationship between parameters for a problem and thus the proba-
bility distribution of solutions can be factored as a product of in-
dependent univariate probabilities. This class of EDAs includes
the well-known probabilistic incremental learning (PBIL) [13],
the compact genetic algorithm (cGA) [14], and the univariate
marginal distribution algorithm (UMDA) [15], to name a few.
Recent developments in the field of EDAs take into account
possible interactions between variables. Modeling bivariate de-
pendencies represents the second class of EDAs and are imple-
mented by e.g., the mutual information maximization for input
clustering (MIMIC) algorithm [16], the combining optimizers
with mutual information trees algorithm (COMIT) [17], [18]
and the bivariate marginal distribution algorithm (BMDA) [19].
The third class of EDAs can model multivariate variable in-
teractions. Examples of algorithms of this class are the factor-
ized distribution algorithm (FDA) [20], the extended compact
genetic algorithm (EcGA) [21] and the Bayesian optimization
algorithm (BOA) [22]. It is worth noting that to handle the in-
teraction problem the second and third classes of EDAs require
complex learning algorithms and significant additional compu-
tational resources. It has been pointed out, for example in [23],
that under certain conditions the benefit of this overhead might
still be unclear. As a consequence, the first class of EDAs al-
though being simple should not be discredited a priori. In this
paper the common points and specifics of QEA compared to
other EDAs are highlighted. In a similar way, other methods
have been also shown to belong to EDAs. For example, as it
was shown in [24] and [25], EDAs and the ant colony optimiza-
tion (ACO) algorithm [26] are actually very similar and differ
mainly in the way the probabilistic model is updated.

The use of a probabilistic model is the key concept of any
EDAs. The QEA follows the same strategy to guide its search
in a given space of solutions. Moreover, in QEA multiple proba-
bilistic models are created and incrementally modified. The idea
of using multiple interacting models in EDAs is not new. Prob-
ably initiated in [27], this idea is now very popular [28]-[32].
We can identify at least two reasons why the multimodel ap-
proach might be useful for optimization problems. First, simple
EDAs such as UMDA and PBIL cannot solve complicated prob-
lems, which has been shown in [33] and [34]. Second, even
advanced EDAs using a complex but still single probabilistic
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Fig. 1. (v)QEA consists of three different interacting levels: the quantum-indi-
vidual, -group, and -population levels.

model may not work well in practice [35]. In QEA, the way the
probabilistic models interact is unique. It is this interaction that
provides the search with an adaptive learning speed and a buffer
against potential decision errors. The second aim of this paper
is to confirm that several models perform better than only one
and then to explain why.

We will begin by briefly reviewing some basic quantum com-
puting principles which we think are necessary to understand
the concept of a QEA. After a description of the algorithm itself,
we investigate QEA in the light of EDAs. Therefore, the prob-
abilistic model, selection and sampling procedures, learning
strategies and population structure used in a QEA are compared
to some classical EDAs. In an extensive experimental study, we
will investigate the behavior and performance of QEA in terms
of fitness, scalability, diversity loss, and robustness against
noise. In the final part the role of multiple probabilistic models
is discussed and some potential advantages are highlighted.
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II. ABOUT (V)QEA

The quantum-inspired evolutionary algorithm (QEA) applies
quantum computing principles to enhance classical evolutionary
algorithms (EAs). We think that the most illustrative example
of QEA is the algorithm first proposed by Han and Kim in [6]
where some major principles of quantum computing are used
such as, the quantum and collapsed bit, the linear superposition
of states and the quantum rotation gate.

A. Quantum Computing Principles

The smallest information unit in today’s digital computers is
one bit being either in the state “1” or “0” at any given time. The
corresponding analogue on a quantum computer is represented
by a quantum bit or Qbit [36]. Similar to classical bits, a Qbit
may be in “1”-state or “0”-state but additionally also in any su-

perposition of both states. The state |¥) of a Qbit [a can be

B
defined as
|¥) = «]0) + 3[1) (1)

where « and [ are complex numbers defining probabilities at
which the corresponding state is likely to appear when a Qbit
is collapsed, i.e., read or measured. In another word, the proba-
bility of a Qbit to collapse to state “0” and “1” is |a|? and |32,
respectively.! In a more geometrical aspect, a Obit defines an
angle 6 such that cos(f) = |a| and sin(f) = |3|.

In order to modify the probabilities « and (3, quantum gates
can be applied. We note that several quantum gates have been
proposed such as (controlled) NOT-gate, rotation gate and
Hadamard gate; see [36] for details.

B. Description of the Algorithm

In [37], the authors proposed a revisited description of QEA
which we would like to summarize here for the sake of com-
pleteness. QEA is a population-based search method. Its be-
havior can be decomposed in three different and interacting
levels; see Fig. 1.

1) Quantum Individuals: The lowest level corresponds to
quantum individuals?. A Q individual ¢ at generation ¢ contains
a Obit string Q;(t) and two binary strings C;(¢) and A;(¢). More
precisely, (); corresponds to a string of IV concatenated QObits

Oll a2 Oéf\r:|

For the purpose of fitness evaluation, each Q); is first sampled
(or collapsed) to form a binary individual C;. Each Qbit in Q);

@

02
is sampled according to a probability defined by ‘Bf ‘ , so that
C; represents a configuration in the search space which quality
can be classically determined using a fitness function f. In the
sense of EA, @, is the genotype while C; is the phenotype of

INormalization of the states to unity guarantees |a|? 4 |3]? = 1 at any time.

2The reader should pay attention that the original notation of Han and Kim
has been slightly revisited here. An individual is here composed of Qbit string
and two binary strings rather than the Qbit string only.
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a given individual. In the sense of EDAs, @); defines a proba-

bilistic model
]
while C; is a realization of this model.

To each individual ¢, a solution A; is attached acting as an
attractor for (Q;. Every generation C; and A; are compared in
terms of both fitness and bit values. If A; is better than C;
(f(A;) > f(C;) assuming a maximization problem) and if their
bit values differ, a quantum gate operator is applied on the corre-
sponding Obits of ();. Thus the probabilistic model P; defined
by Q); is slightly moved toward the attractor A;.

The update policy of an attractor A; can follow two distinc-
tive strategies. In the original QEA [6] an elitist update strategy
was used, in which the attractor A; is replaced by C; only if
C; is better than A;. In a nonelitist update strategy (first intro-
duced in [37]) C; replaces A; at every generation. The choice of
the update policy has great consequences for the algorithm and
changes its behavior completely. To emphasize the importance
of the update rule the nonelitist version of QEA has been pro-
posed as Versatile QEA (VQEA) [37] as the attractors are able to
change every generation and therefore demonstrate a very high
volatility. In Section III, we give a more detailed explanation of
the role of elitism.

In classical EA, variation operators like crossover or mutation
operations are used to explore the search space. The quantum
analog for these operators is called a quantum gate. In this study,
the rotation gate is used to modify the Obits. The jth Obit at
time ¢ of @); is updated as follows:

2

Pi= 6l |8Y

[a{(t+ 1)} _ [cos(M)

A bervilisinvid [am

cos(Af) B (t)

where the constant Af is a rotation angle designed in compli-
ance with the application problem [7]. We note that the sign of
A6 determines the direction of rotation (clockwise for negative
values). In this paper, the application of the rotation gate oper-
ator is limited in order to keep 6 in the range [0, 7/2].

2) Quantum Groups: The second level corresponds to
quantum groups. The population is divided into g Q groups
each containing k£ Q individuals having the ability of syn-
chronizing their attractors. For that purpose, the best attractor
(in terms of fitness) of a group, noted Bgroup, is stored at
every generation and is periodically distributed to the group
attractors. This phase of local synchronization is controlled by
the parameter Siocal-

3) Quantum Population: The setof all p = g x k Q individ-
uals forms the quantum population and defines the topmost level
of QEA. As for the Q groups, the individuals of the Q popula-
tion can synchronize their attractors, too. For that purpose, the
best attractor (in terms of fitness) among all Q groups, noted
Bgiobal, is stored every generation and is periodically distributed
to the group attractors. This phase of global synchronization is
controlled by the parameter Syio1a1. We note that in the initial
population all the Obits are fixed with |«|?> = |32 = 1/2 so
that the two states “0” and “1” are equiprobable in collapsed in-
dividuals.

} 3)
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C. Previous Results

In the last ten years QEA received a lot of attention and have
already demonstrated their superiority compared to classical EA
for solving complex benchmark problems such as combinatorial
[6], numerical [38], [39] and multi-objective optimization [40],
as well as real world problems namely disk allocation method
[41], face detection [42], rigid image registration [3], training
of multi layer perceptron [43], signal processing [44] and clus-
tering of gene expression data [45].

The quantum-inspired evolutionary algorithm (QEA) intro-
duced in [6] is elitist. The exploration of the search space is
driven by attractors corresponding to the best solution found so
far either at the individual, local, or global level. If a nonoptimal
solution is propagated to the global level then this solution starts
to attract the entire population. As long as no better solution is
found, all the probabilistic models converge towards this global
attractor. The probabilistic model becomes unable to produce
solutions different from the attractor and therefore QEA can be
trapped. Hence, the bad choice of an attractor can quickly be-
come irreversible. QEA is very prone to prematurely converge,
suffering mostly by the phenomenon of hitchhiking as experi-
mentally shown in [37].

To prevent the choice of an attractor from being irreversible,
the versatile quantum-inspired evolutionary algorithm (VQEA)
was proposed in [37], cf. Algorithm 2 in Appendix . In VQEA,
elitism is switched off and the search at time ¢ + 1 is driven
by the best solution found at time ¢. Simply removing elitism
has strong consequences. With vQEA, the information about the
search space collected during evolution is not kept at the indi-
vidual level but continuously renewed and periodically shared
among the groups or even the whole population. Thus, eventual
decision errors do not have long term consequences. VQEA is
continuously adapting the search according to local information
while the quantum individuals act as memory buffers to keep
track of the search history. This leads to a much smoother and
more efficient long term exploration of the search space.

In [37], QEA and vQEA have been tested on several bench-
mark problems and their superiority to a standard genetic algo-
rithm (sGA) was demonstrated. It was claimed that (v) QEA be-
longs to the class of EDAs. The authors also stated that elitism
is not beneficial for that particular type of EDA. This hypoth-
esis was further strengthened by the obtained experimental re-
sults. On every benchmark problem vQEA performed better
than QEA in terms of speed, solution quality, and scalability.
For that particular reason in Sections III-V, we will concen-
trate our analysis on vVQEA only. More generally, we have not
been able to found any experimental conditions for which QEA
should be preferred to vQEA.

III. VQEA 1S AN EDA

According to [15], the algorithms that use a probabilistic
model of promising solutions to guide further exploration of
the search space are called estimation of distribution algorithms
(EDAs). We have seen in Section II-B that each Q individual
define a probability vector and so, as it has already been claimed
in [9], [10], and [37], vQEA is a new algorithm belonging to
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the class of EDAs. A generic description of EDAs is proposed
in Algorithm 1.

Algorithm 1 Estimation of Distribution Algorithm (EDAs)

I:t <=0

2: initialize the probabilistic model P(¢)

3: while not termination condition do

4: sample M new solutions from P(¢) into D(t)
5: evaluate the elements of D()

6: select L < M solutions from D(t) into Ds(t) using a
selection method

7:  learn the probabilistic model P(¢ 4+ 1) from Dy (t) and
eventually from P(t)

8 t<«t+1
9: end while

In this section, an extensive study of the features of VQEA is
proposed. The common points and specifics of vVQEA compared
to other EDAs are highlighted.

A. Probabilistic Model

The complexity of the probabilistic model, noted P in Algo-
rithm 1, varies largely among EDAs. In [11] a survey on EDAs
reports three different classes based on the level of interactions
between the variables that their models can represent. In the ver-
sion of vVQEA discussed in this paper, binary states are super-
posed and the eventual interactions between variables are not
explicitly taken into account. At the Q individual level, the prob-
abilistic model P;, as defined in Section II-B, is a vector of prob-

2
abilities since each ‘ It ‘ value is used independently for sam-

pling. Therefore, vQEA belongs to the first family of EDAs that
assumes independent variables and for which the probabilistic
model is a vector of probabilities, such as population-based in-
cremental learning (PBIL) [13], compact GA (cGA) [14] and
univariate marginal distribution algorithm (UMDA) [15]; (see
Appendix for a detailed description of these algorithms). This
family of EDA although being simple should not be discredited
a priori since the benefit of searching complex variable inter-
actions could, under particular circumstances, be still unclear
[23]. We will see in Section V how the p individuals of the
Q population interact to form a multimodel EDA, with P =
{P1,....,Pp}.

In EDAs, the probabilistic model P is iteratively updated to
account for the fitness of the last L solutions selected in D,.
Nevertheless, the state space on which PBIL, UMDA, cGA, and
VQEA act differs. In PBIL, an element P/ of the probability
vector has an arbitrary precision AP and so the number of pos-
sible values for P7 is infinite. Conversely, in cGA, this number
is finite and the precision AP is constant. The so-called vir-
tual population size parameters n determines the accuracy of
the model since the update steps have a constant size AP =
1/n. With UMDA, the accuracy of P7 depends directly on the
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Theoretical variations of probabilistic models

Probability
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cGA 4
, . ) VQEA ——
0 10 20 30 40 50
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Fig. 2. Theoretical variations of the probabilistic model in PBIL, cGA, and
vQEA.

number L of solutions selected to compute the next probability.
However, the update steps are not constant and depends on the
variance of the empirical frequency at locus j.

For vQEA, the situation is even more complex. At the level
of a Qbit @7, the application of the rotation gate operator ac-
cording to Af can only produce a finite number (7/2) x (1/Af)
of positions for the angle #] € [0, /2], and so for the proba-

bility P} = |
constant in angle but subsequently varies for P; . More formally
we have

2 .
= sin? (0{) The size of the update steps is

AP (8]) = sin? (67 + A0) —sin? (67)
=2cos (67 sin (67) x A, @

It is worth noticing that, according to (4), the more a Obit is
converged (with §7 — (7 /2) or #/ — 0) the smaller the update
step. This phenomenon can be seen as a form of deceleration of
the algorithm before convergence.

We can see in Fig. 2 how an element of the probability vector
is affected by several successive applications of the update op-
erators for PBIL, cGA, and vQEA. We note that this figure does
not reflect the real behavior of the algorithms. This is a theoret-
ical situation where the conditional aspects of the update are not
taken into account and so where models are updated at every
generation. The initial probability is set to 1/2 and the update
direction is toward “1” for each operator. The learning rate of
PBIL is fixed to R; = 0.1, the virtual population size of cGA to
n = 50 and for vQEA the parameter Af is equal to (1/50)(7/2)
and only one Q individual is used. With such a setting, both cGA
and VQEA require 25 update steps to converge.

When considering the population level of VQEA, a set of p
probability vectors interact in a complex way (cf.Section V).
The accuracy of the overall model P = {Pi,...,P,} can be
investigated for example trough looking at the variations of the
mean model at locus j, noted P4, such that

— 1<
,P]:;;

2

3

)
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, 2
In vQEA, the update of each #/ and subsequently of each ’ B! ’

is conditional and is performed independently among the popu-
lation. Therefore, the number of positions for the average angle
67 € [0,7/2]is (7/2) x (1/A0) x (1/p).

B. Sampling and Selection

The classical EDAs are distinguished also by the number of
solutions M (cf. line 4 of Algorithm 1) sampled at every genera-
tion to form the set D. Both PBIL and UMDA require an impor-
tant number of samples in order to work properly. For example,
in [46], the author claimed that M should be large compared
to the square root of the problem size N, so that UMDA find
the optimum on a One Max problem. Conversely, cGA works
with only M = 2 bit strings produced per generation. In vQEA,
all the Q individuals collapse during one generation, and so for
each (Q; this phase corresponds to the sampling of only one so-
lution from the corresponding model P;.

After sampling and evaluation of D, the next step in EDAs
consists in selecting L solutions into Dg. This subset will be
further used during the learning phase. Again, various selection
schemes exist in EDAs. For example, PBIL selects only the best
(and sometimes together with the worst) element of D3. In cGA,
atournament determines a winner and a looser solution, whereas
in UMDA a truncation selection is often employed [47], where
the 100a% best solutions are selected (typically « = 1/2). We
note that other models can be used as well such as proportional
or tournament selection [48].

At first glance, the selection process of VQEA may appear not
so distinctive: as in a tournament each attractor A;(t) is basically
compared in terms of fitness to the last collapsed string C;(t).
Nevertheless, these tournaments are not symmetric. Only if an
attractor wins a tournament, a learning phase occurs, otherwise
no solution is selected and there will be no learning.

It is noteworthy that C;(¢ 4 1) is sampled from P; (¢ + 1) and
A;(t+1) from P;(t). If the fitness of A;(#) is not strictly better
that the fitness of C; (), then the probabilistic model P; (¢) stays
unchanged, i.e., P;(t + 1) = P;(¢). In this case, C;(t + 1) and
A, (t+1) are sampled from the same probabilistic model. There-
fore, with an evolutionary point of view, we can consider that
they belong to the same generation. Otherwise, after an update
of P;(t), the selection involves C;(¢ + 1) and A;(t + 1) issued
form generations £+ 1 and ¢, respectively. In other words, vQEA
is a form of steady-state EDAs where “parents” and “offspring”
may compete against each other. This feature of vVQEA is an
important specifics since most of the other EDAs are “genera-
tional.”4 However, we found some noticeable exceptions where
elitism is implemented in EDAs, for example [28] and [50], and
so where inter-generational competition exists.

C. Learning and Replacement

The step 7 in Algorithm 1 is a learning phase where the prob-
abilistic model P(¢ + 1) is built to account for the solutions
previously selected in Dg(t). With UMDA, P(¢ + 1) is fully

3A similar approach has been explored in the best—worst ant system algorithm
[24], which also belongs to the class of EDAs.

4Some steady-state EDAs exist in the continuous field [49].
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determined using only the set D,(t), whereas with PBIL and
cGA, both D(t) and P(t) are involved and the learning is in-
cremental. In cGA, the learning is also conditional since the up-
date of the model occurs only at the positions where the winner
and the looser bit strings differ. In the original version of PBIL,
the learning is unconditional, but we note that some extensions
of the basic algorithm have been proposed where the bits of the
best and worst solutions are also compared to determine the up-
date; see [13].

Beside the update operator itself (i.e., the rotation gate) the
learning process in VQEA is exactly the same as the one em-
ployed in cGA. If an attractor A; wins a tournament, then the
binary strings C; and A; are systematically compared and the
model P; is updated toward A; only where C; and A; differ.

We can see in Fig. 3 how an element of the probability vector
is affected by the learning process for PBIL, cGA, and vQEA
when solving a one bit One Max problem. We note that UMDA
is not studied here because it nearly convergences after the first
iteration on this problem. Contrary to Fig. 2, we can see the
real algorithms working here with the action of the conditional
learning for cGA and both the asymmetric selection and condi-
tional learning for vQEA. The curves correspond to the evolu-
tion of one probability averaged among 30 independent runs of
200 generations. The learning rate of PBIL is fixed to ; = 0.1
and M = 2 solutions are sampled from the model, the virtual
population size of cGA is n = 50 and for vQEA the parameter
Af# = (1/50)(m/2) and only one Q individual is used. With
such a setting, the convergence of PBIL is the fastest mostly be-
cause the learning is unconditional. The actual shape is not so
different from the theoretical shape reported in Fig. 2. In fact,
with only two samples per generation according to this setting
of PBIL, the probability of learning a “0” is not null (e.g., 0.25
at the beginning of the run) and so the model is sometimes up-
dated toward the wrong direction slightly slowing down the ac-
tual convergence speed. When solving a one bit One Max, the
conditional learning prevents the models of cGA and vQEA to
be moved toward the wrong direction and also significantly de-
crease their convergence speed. Besides, the asymmetric selec-
tion makes VQEA even slower than cGA. Indeed, the probability
of updating the single dimension model P on this particular
problem is 2P(1 — P) for cGA and P(1 — P) for vQEA.

Most of the time in VQEA, at generation ¢ + 1, each Q in-
dividual attractor A;(t + 1) corresponds to the last sampled
solution C;(¢). Nevertheless, according to the structure of the
Q population and the local and global synchronization periods,
several Q individuals can also share a common attractor during
one generation.

D. Population Structure

Because of the numerous aforementioned specificities of
vQEA compared to other EDAs, it is clear that even when
considering only a single Q individual, vQEA is an original
EDAs. Nevertheless, what makes vVQEA very unique is that it
was designed as a coarse-grained algorithm, with a complex
structured population of Q individuals. The situation can be
easily compared to multiple demes in EA where subpopu-
lations are artificially separated to promote speciation and
where migration allows to share information between demes.
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Actual variations of probabilistic models
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Fig. 3. Actual variations of the probabilistic model in PBIL, cGA, and vQEA.

We note several interesting attempts of multipopulation EDAs
[28]-[31].

In vQEA, the structure of the population is fully determined
by the number g and the size k of the Q groups together with the
so-called local and global synchronization periods, noted Siocal
and Sgiobal, respectively. Actually, there is not a single fixed
topology, but rather three superimposed levels of organizations
appearing iteratively according to the synchronization periods.
As an example, when a global synchronization occurs at time ¢,
the best attractor among the Q population is selected and then
used at time ¢t 4+ 1 by the p = ¢ X k Q individuals. Therefore,
at that particular time, the structure of the Q groups does not
matter. The situation is the same for the Q individuals in a Q
group that are to some extend connected but only during a local
synchronization event.

In this paper, we are interested in three different structures:
a Q population containing only one single Q individual, a Q
population containing a unique Q group of several Q individuals
and finally the most complex one, a Q population containing
several Q groups of several Q individuals.

1IV. EXPERIMENTS

In this section, PBIL, cGA, UMDA, and vQEA are exper-
imentally compared to each other. Besides the fitness perfor-
mance comparison, we are also interested in the diversity loss,
the scalability, and the robustness of each algorithm. However,
the performance and the overall behavior of PBIL, cGA, and
UMDA strongly depend on the setting of their parameters and
the optimal setting varies as a function of the problem to solve.
It is not the purpose of this paper to find the most appropriate
setting for each algorithm and then to state that one algorithm is
better than another.

A. Experimental Setting

We adopted different policies to set the parameters; see
Table I. For vQEA, three settings are investigated: a single
Q individual (vQEA, ;), one group of ten fully synchronized
Q individuals (vQEA; 1) and five groups of 2 Q individuals
synchronized every 100 generations (vQEA;.). For PBIL,
we decided to fix M to 10 in such a way that the number of
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TABLE I
PARAMETERS SETTING
[ Algorithm | Setting | Name
sGA M = 100, uniform crossover SGA
Pc’ross = 1, P'mut =0.01
PBIL M =10, Ry =0.1, R,, =0.02, R; = 0.05 | PBIL
cGA n= 4\mlogN cGA
UMDA M = 500, truncation= 50% UMDA
vQEA g=1,k=1, A0 = w/100 VQEA; 1
- g=1, k=10, A6 = 7/100 VQEA 10
Sglobal =1
- g=>5,k=2, A6 =n/100 VQEA;5 o
Slocal =1, Sqlobal =100

solutions sampled and evaluated in one generation is equivalent
to both vQEA; 1o and vQEA; ». Actually, according to [46], this
setting is suitable for low-dimensional problems (N ~ 100).
For cGA, the virtual population size is adapted according to the
problem size N following the recommendation reported in [51],
whereas for UMDA a fixed setting suitable for high-dimensional
problems is used.

The experimental results presented hereafter are obtained by
averaging 30 independent runs consisting of 10° evaluations for
each algorithm and problem tested. We use a statistical unpaired,
two-tailed ¢-test with 95% confidence to determine if results are
significantly different.

B. Diversity Loss

The drift phenomenon in EA refers to the loss of genetic di-
versity due to finite population sampling. In [46], the loss of
diversity is studied in the context of EDAs: it is shown that
without selection, i.e., on a flat landscape, the variance of the
probabilistic model iteratively decays to zero and consequently
the model converges towards a fixed configuration. Most EDAs
do not compensate for this, and the lost diversity cannot be re-
stored. Moreover, it is also shown that for a nonflat problem the
random drift may counteract the effects of selection. Therefore,
the parameters of the algorithms have to be tuned properly so
that the selection is the main force driving the search.

In this section, an empirical comparison of the loss of diver-
sity of cGA, PBIL, UMDA, and vQEA using the settings re-
ported in Table I is performed on different benchmark problems.
Following [46], to estimate the diversity of the bit strings sam-
pled by an EDAs at generation ¢, we compute the variance v
such as

v(t) = ij(t)(l — Pi(t)) ©)

with P4 (t) the jth element of the probabilistic model P at gen-
eration . In the case of vVQEA, the average model P(t) over the
p Q individuals (cf. Eq. 5) is used instead. The maximum diver-
sity corresponds to vg = N/4 and v(t) = 0 indicates that the
models have converged.

We have seen in Section III-B that the selection process de-
termining the learning phase of VQEA is asymmetric since the
update of a model P; occurs only if f(A;) > f(C;). On a flat
landscape, this situation is impossible; therefore, P; cannot vary
and vQEA cannot loose diversity, i.e., v(t) = vo. We note that
this is the optimal behavior for an EDA since if no information is
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Fig. 4. Loss of diversity on Noisy Flat landscape, One Max, and NK-land-
scapes with N = 2048.

provided each solution of the search space keeps an equal proba-
bility of being sampled. The previous remark also stands for the
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so-called Needle problem. Nevertheless, the drift phenomenon
exists in VQEA as well and can be monitored if we add noise
to the Flat landscape. We assume a random noise such that the
fitness is either O or 1 with an equal probability.

In Fig. 4, the average empirical variance v(t) is plotted as a
function of the number of fitness evaluations for a Noisy Flat
landscape, two NK-landscapes® with K equals O or 8 and a One
Max problem. The size of these four problems is fixed to N =
2048 variables.

In the Noisy Flat landscape problem, only random drift can
cause the convergence of an algorithm; see Fig. 4(a). PBIL is
the algorithm that is the most prone to loose diversity, with
v(t) = vo/2 after only 720 evaluations, probably because the
setting of the learning rate is not suitable for high-dimensional
problems. We see also the effect of the mutation operator of
PBIL that perturbs the probabilistic model and guarantees a
residual level of diversity around 1/2 N R,,, Rs(1 — Ry), (cf.
Appendix for a detailed description of the mutation operator in
PBIL). With L = 250 for UMDA and n = 305 for cGA, the av-
erage loss of diversity of both algorithms appears surprisingly
almost identical and is also very slow compared to PBIL with
v(t) = vp/2 after around 85 000 evaluations. When comparing
the loss of diversity of vQEA; ;o and vQEA, ;, we found that the
shapes of the two curves are identical and that only their speed
differ. Actually, the loss is exactly ten times faster for vQEA; ;
than for vQEA, 1, with v(t) = vo/2 after 2400 and 24 000 for
vQEA, ; and vQEA, ;¢, respectively. vQEA; , reports the smallest
lost of diversity since after hboz10° fitness evaluations we still
have v(t) > vg/2.

From [53], we know that the mathematical expression of the
loss of diversity of UMDA on a Flat landscape is

N /1-1\"
vumpal(t) = 1 (T) . @)

We claim that this expression stands also for the Noisy Flat land-
scape as defined above. An attempt was made to fit the variance
v(t) of VQEA by varying L in (7) for N = 2048. It was clear that
the loss of diversity of VQEA does not follow the same model
as UMDA; nevertheless, the most appropriated values found for
L was 65, 160, and 350, for vQEA; ;, VQEA; 10, and vQEA; o,
respectively.

On NK-landscapes, the loss of diversity is due to selection
only and the global optimum is unique. For K = 0, the N vari-
ables can be optimized independently; therefore, this problem is
considered to be easy to solve. We see in Fig. 4(b) that the loss
of diversity is faster than on the Noisy Flat landscape for each
algorithm tested. The convergence of the probabilistic models
towards the global optimum is responsible for this loss and ex-
cept for PBIL, the variance v(¢) falls down to zero within the
10° evaluations. Apart from vQEA; 5, the introduction of inter-
actions between the variables (with K = 8) does not seem to
affect the way the algorithms convergence. Although, we will
see Section V-C that the ten probability vectors of vQEA; » are
all almost converged as well.

5According to [52], the K interactions between the N parts of the systems
are chosen randomly and the corresponding problem has been proved to be
NP-complete for ' > 1.
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When we rank the algorithms according to the number of
evaluation ¢ at which v(t) = wo/2, this rank is identical for
the Noisy Flat landscape and NK-landscapes. This is no longer
the case on the One Max, in particular for cGA (cf. part (d) of
Fig. 4). This problem has no local optima but a single global op-
timum. Additionally, some neutral dimensions exist as different
solutions may have equal fitness values. Hence, both selection
and random drift are responsible for the loss of diversity here.
As a consequence, the convergence speed of the algorithms is
higher on the One Max than on the previously studied prob-
lems. Nevertheless, the diversity loss for cGA is slower than on
NK-landscapes with K = 0. Thus, we can reasonably assume
that the neutrality of the problem is responsible for this behavior
and of the poor performance of cGA reported in Section V.

C. Scalability

In this section, we investigate the impact of the problem size
on the number of fitness evaluations required to find a global
optimal solution. For this experiment, we choose the One Max
problem as the global optimum is unique and known in advance.
Each of the algorithms is applied on the One Max problem with
N varying from 50 to 2000 bits. For all the algorithms, the pa-
rameter settings reported in Table I were kept unchanged.

Fig. 5 shows the number of fitness evaluations as a function
of the problem size N on One Max. For each algorithm, the
filled symbol indicates that the global optimum was found in
every single run being performed. If only some of the runs were
successful, an empty symbol is used instead, and if none, the
symbol is not plotted. For small problem sizes, all of the algo-
rithms except of cGA were able to find always the best solution.
It is noted that for almost every problem size cGA was unable to
find the global optimum in all of the runs. The number of evalu-
ations grows exponentially for PBIL when facing a problem size
of N > 700. It has to be noted that we have chosen M = 10
individuals for PBIL, because of an equal number of evalua-
tions per generation compared to vQEA; ;4. For small problem
sizes this setting seems to be very suitable: e.g., for N < 600
the average fitness evaluations required are the lowest among
all other algorithms. We tried other settings for PBIL, but none
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Fig. 6. Performance on NK-landscapes N = 2048.

of them scaled well. For example, using M = 25 individuals
PBIL performed bad for small problem sizes, but for NV = 1000
all 30 runs converged to the global optimum, which required
on average only 30 138 (o = 4139.4) evaluations. In a similar
way, the performance of UMDA clearly depends on the problem
size. Setting the population size M to 500 is known to be suit-
able for high-dimensional problems and the results vary as ex-
pected: For small size problems, the number of fitness evalu-
ations required is nearly doubled compared to the other algo-
rithms but for N = 2000, only vQEA, ;o outperforms UMDA.
vQEA; 19 shows an almost linear increase of fitness evaluations
while consistently finding the optimal solution up to a problem
size of 1600. At least in this study vQEA, ;, demonstrates a high
scalability. Furthermore, this single-parameter setting appeared
to be suitable for a large variety of problem sizes. The authors
were not able to find such a robust setting for any of the other
presented algorithms.

D. Fitness

In [37], vQEA was already compared to a standard Genetic
Algorithm (sGA) on NK-landscapes and has shown to be
superior in terms of both speed and quality of the solution
found. In this section, we want to investigate the performance
of PBIL, cGA, and UMDA on the same optimization problem.
The quality of the results is presented in relation to a sGA:
more precisely, the average fitness of the best solutions reached
by an algorithm A is noted f7, and the relative performance
of A is defined as the ratio f%/fX. 4. In Fig. 6, the relative
performance is plotted for N = 2048. It is clearly shown
that each EDA outperforms sGA significantly. For small K
(and therefore no or low level of interaction between the N
variables) PBIL falls behind UMDA, cGA, and vQEA, ;o while the
latter three do not show significant difference compared to each
other. Nevertheless, it has to be noted that vQEA; ;, shows the
lowest variance in the quality of the best solution found among
all the other algorithms. With K > 10, the performance of
UMDA and cGA drops significantly obviously being impacted by
the higher number of local optima in the fitness landscape. On
the other hand, vQEA; ;, stays rather unaffected by the problem
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difficulty reporting always between 8% to 9% of fitness higher
than a sGA.

Fig. 7 shows the average best relative fitness of several
problem sizes N and fixed K = 8. For larger problem sizes
N > 1024, each algorithm performs significantly better than
a sGA. Again, vQEA; ;, shows the lowest variation in the final
fitness. There are no significant fitness differences for the
problem sizes N = 512 and N = 1024. For N > 2048, PBIL
falls behind and for N = 4096, vQEA, ;, delivers the highest
solution quality, performing slightly better than each of the
other tested algorithms.

E. Robustness

Noise is known to be an important factor that influences evo-
lutionary algorithms. The convergence robustness against fit-
ness noise of PBIL, cGA, UMDA, and vQEA is studied. We
assume a multiplicative Gaussian noise, and we define the noisy
fitness function F’ as

F(z) = f(z)-N(1,0%) (8)

with 2 an element of the solution space and o2 the noise vari-
ance. Also, we define the robustness R (o?) of an algorithm as
the ratio between the average best fitness found when noise is
applied (02 > 0) and the average best fitness found without
noise (02 = 0). Experiments were performed on One Max with
N =256 and o € [0, 1.5], and the results are plotted in Fig. 8.
For all algorithms we know by construction that R(0) = 1.0,
and we see clearly that this robustness is strongly impacted by
the increase of the noise variance. Nevertheless, we distinguish
two groups of algorithms, with PBIL, cGA, and vQEA; ; on one
side and UMDA, vQEA, ;¢, and vQEA; 5 on the other side. In the
first group, as far as noise is introduced, the robustness decreases
extremely fast even for small noise variance. For larger values of
noise, the robustness is close to 55% which is comparable to the
performance of a random search on a One Max problem. In the
second group, the robustness decreases comparatively slower
and is still around 70% for 02 = 2.25, where vQEA; ;4 out-
performs all the other algorithms tested with R(2.25) = 74%.
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We note that cGA and vQEA, ; sample, respectively, two and
one solutions per generation to update the probability vectors
and with PBIL only the best among ten solutions is used. We
think that, in the presence of noise, this few number of samples
processed leads to decision errors. Indeed, a classical remedy
known to counteract the effect of noise in EA is to perform mul-
tiple evaluations of the fitness. With UMDA M = 500 solutions
are analyzed before a learning phase occurs. This large number
of evaluations before a model update is probably responsible
for the convergence towards an average good solution. Popu-
lation-based search algorithms are also known to be robust be-
cause of their self-averaging nature. We claim that in vQEA the
Q population acts as a buffer against decision errors because Q
individuals are able to share information about the search space.
Since in vQEA; 10, all Q individuals are embedded in the same
Q group and thus follow the same attractor (Sjocal = 1), the
information share is maximized and therefore vQEA; ;, is the
most robust of the algorithms tested here. Moreover, we know
from [54] that the interactions between variables may be seen as
a form of fitness noise by the algorithms what could also explain
the good results reported in the previous section for vQEA; ;o on
NK-landscapes for high degrees of epistasy (K > 10).

V. ROLE OF MULTIPLE MODELS

In this section, we investigate further the role of the set of
multiple probabilistic models P = {Px, ..., P,} in vQEA.

A. Do Multiple Models Perform Better Than Only One?

vQEA has been originally introduced as a coarse-grained evo-
lutionary algorithm with several interacting Q individuals. Nev-
ertheless, we are not aware of any serious demonstration of the
superiority of using a Q population compare to using only a
single Q individual. A fair comparison between vQEA; ; and
VQEA; 19, i.e., not based on an equivalent number of generations
but on a equivalent number of fitness evaluations, is performed
on One Max and NK-landscapes problems. For all the exper-
iments carried out, the fitness of the best solution found with
vQEA, ;o is better or equal to the best solution produced with
vQEA, ;. Asanillustration, in Fig. 9, the average evolution of the
best fitness found on NK-landscapes with N = 256 and K = 16
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Fig. 9. Fitness evolution of single and multiple models VQEA on NK-land-
scapes.

is plotted for vQEA; ; and vQEA; ;¢ as a function of the number
of evaluations. The setting of the parameters is given in Table I.
For both settings, the fitness improves extremely fast after few
evaluations then, while vQEA; ; keeps a similar trend until it
prematurely convergences, vQEA; ;o reports a more step-wise
increase and finally reaches a higher fitness level.

In vQEA; 19, ten Q individuals synchronize their attractors at
every generation ¢ using the best solution sampled at generation
t — 1. This setting implies that the ten corresponding proba-
bility vectors Py, ..., Py are all following a unique attractor
and therefore the same direction in the search space. If we as-
sume that each model P;(¢) is not so different from the mean
model P(t), having several models instead of only one may ap-
pear a priori useless. Nevertheless, the benefit of using multiple
models is clearly demonstrated experimentally. Hence, we in-
vestigate two different hypothesis to explain the better results
obtained with vQEA; ¢.

In the first hypothesis, we assume that vQEA, 1 benefits from
the fact that the search direction is chosen after sampling ten so-
lutions, i.e., one per model. For that reason, we propose to pro-
duce ten solutions from the single probabilistic model and then
to use the best among them as the next attractor. This algorithm
isnoted vQEA; 1_.10 in Fig. 9. We see that vQEA; ;_.1 is outper-
formed by vQEA; ; and vQEA, ;( in terms of speed and average
fitness of the best solution found.

In the second hypothesis, we assume that vQEA; ;o benefits
from a slower convergence speed. We note that in vQEA, ;, it
may happen that only one vector P; among the ten is updated
during one generation . In that case, the average model P(#)
moves very slowly towards the attractor, and the update steps
correspond to Af/10. Therefore, we propose to evaluate the
performance of a single Q individual vQEA with a ten times
smaller update step Af = 1/10 x w/100. As expected with this
setting the algorithm noted vQEA; ;_; in Fig. 9 reports a slower
convergence speed and outperforms vQEA, ; in terms of fitness.
The fitness increases slowly, in a step-wise manner similar to
vQEA; ;o but finally reaches a significantly smaller fitness value.

We have gone to great effort to reproduce results similar to
vQEA; 1o using one probabilistic model only but we have not
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been successful. Therefore, we claim that even when they are
fully synchronized and so almost equal, the multiple proba-
bilistic models perform better.

B. Adaptive Learning Speed

We believe that the interplay of the fully synchronized
multiple models leads to an adaptive learning speed. To illus-
trate this we plot the evolution of the mean model P(¢) when
solving a one bit One Max problem for vQEA; 1, VQEA; ;_g,
and vQEA; ;o; see Fig. 10. For that specific experiment, the
initial probability is set to sin?(Af) ~ 0. The only difference
between vQEA; ; and vQEA, ;- is the setting of Af and as a
consequence their convergence speeds. We see that for these
two settings, the evolution of the probability looks like a arctan
function. In particular, the shape of the two curves is identical
when the probability leaves zero or when it reaches one. On
the contrary for vQEA; ;3 an asymmetric behavior is observed:
the average probability leaves zero much more faster than it
reaches one. More precisely, the average probability evolves
in a way similar to vQEA; ; when moving away from zero and
then similar to vQEA, ;-, when approaching one. This is a very
desired behavior as we expect that the algorithm dedicates more
efforts to explore the promising areas of the search space.

This phenomenon can easily be explained when considering
the set of ten vectors {P1,...,P1o}. At the beginning of this
experiment, almost every solution C; produced is “0.” When
by chance a “1” is sampled, it becomes the next attractor for
the Q population and so there is a high probability that the ten
models are updated at the same time. Therefore, the learning
speed of P(t) can be high, i.e., depending on Af. Afterwards,
the number of models updated during one generation starts to
decrease. The extreme case is when only one model is updated
what implies a much more slower learning speed for P(t), i.e.,
corresponding to 1/10 x Af. The situation can be seen as a
voting mechanism controlling the overall learning speed. When
the Q individuals all agree that a direction in the search space is
not appropriate, their models all move away and subsequently
the average model moves fast. Conversely when they disagree,
the mean model moves very slowly giving more accuracy and
therefore more time to the algorithm to take the right decision.
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scapes.

We believe that this adaptive learning speed is also responsible
for the good results reported for vQEA in terms of robustness to
fitness noise.

C. Do Multiple Models Perform Better Than a Mean Model?

In the two previous sections, it is assumed that in vQEA; 14
the models Py, ..., Pio are almost identical at time ¢ and there-
fore equivalent to the mean model P(t). Subsequently, it is as-
sumed that the distribution of solutions in the set {C', ..., Cio}
sampled from the ten models at time ¢ is to some extend equiv-
alent to the distribution obtained when sampling ten solutions
from P(t). We now evaluate the validity of this assumption for
vQEA; 10 but also for vQEA; .

For that purpose, we introduce two variants, noted
vQEA; 10-r, and vQEAj 5., where the mean model is used
for sampling. More precisely, the overall structure and settings
of the algorithm are kept unchanged except that a mean model
P(t) is computed every generation and then used to produce the
individual solutions C;(t). In particular, it is noteworthy that
the adaptive learning speed described earlier works for these
two variants as well and therefore any noticeable variation in
the performance of the algorithm may result from the use of the
mean model only. In Fig. 11, the average evolution of the best
fitness found on NK-landscapes with N = 256 and K = 16 is
plotted as a function of the number of evaluations.

We note that the two curves obtained for vQEA; ;o and
vQEA; 10-, are very similar and their average final fitness
values are statistically identical. Notwithstanding, the slightly
faster convergence of vQEA; 1o compare to vVQEA; 1o, the
assumption made in the previous section seems to hold on this
problem: sampling ten fully synchronized models P; is indeed
comparable to sample the corresponding mean model P. The
situation is clearly not the same for vQEA; . While vQEA; >
is the best setting of vQEA tested on this problem, vQEA5 5.,
reports extremely poor results. Therefore, we claim that when
they are not fully synchronized the multiple probabilistic
models can perform better than the mean model.

In vQEA; », five Q groups of two fully synchronized Q in-
dividuals are evolved and the best attractor among the groups
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is shared, according to the parameter Sgiohal, €very 100th gen-
eration. However, in vQEA the attractor are systematically re-
placed at every generation, so that a given synchronization can
affect the evolution of the Q groups during a single generation
only. As a consequence the groups can evolve almost separately
towards different regions of the search space. With K = 16
epistatic links in the problem, the interactions between the 256
variables are important and the problem is not easy to solve. We
believe that with vQEA; » each Q group can specialize on dif-
ferent patterns of bits and so that the multiple models of vQEA
allow to sample a more complex distribution of solutions than
with a single probability vector.

D. Measuring Diversity

In order to measure the diversity of the solutions sampled by
the multiple models in vQEA, the variance v(t), as defined in
(6), is not necessarily adapted. Actually, in Section IV-B, the
variance was computed using the mean model P(t), but clearly
this procedure does not consider the conditional probabilities
and is not sufficient to represent interactions among variables.
Thus, the more the vectors Py, ..., P, differ at time £, the less
the variance v(t) is suitable. Hence, we propose another ap-
proach where two metrics are used to represent the diversity of
the solutions produced at time ¢: the convergence of the Q pop-
ulation noted Conv(¢) and the pairwise distance between the Q
individuals noted Dist(t).

The convergence of a Q population reflects how the N Obits
have converged in the whole population. We define Conv’, the
Qbit convergence at locus j

p

Y

P

Conv’ =

i 1
A
Pl - ‘ ©)

and so the convergence of the Q population corresponds to the
mean Qbit convergence over N Qbits such that

N

1 )

Conv = N E Conv’. (10)
J

The pairwise distance between the Q individuals reflects
how their probabilistic models differ. To represent the distance
Dist; ;. between two probability vectors P; and Py, we propose
to simply compute

N
1 . )
Distix = - > [P/ = Pl (1
J

Following [55], this metric can be easily interpreted as the pro-
portion of mutational changes required to transform a set of
solutions sampled from P; to a set of solutions sampled form
‘Pr.. Hence, the pairwise distance between p Q individuals cor-
responds to

9 pp

Dist = — Dist; . (12)
b1 21,22, "

We have computed the evolution of Conv(t) together with

Dist(¢) on NK-landscapes with N = 2048 for K = 0 and
K = 8. The setting was vQEA; » as described in Table I, i.e.,
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Fig. 12. Pairwise Distance between Q individuals versus Convergence of the
Q population on NK-landscapes.

five Q groups of two synchronized Q individuals are evolved
and the best attractor is shared according to Sgiobal. Further-
more, the influence of the global synchronization period Sgiohal
was also investigated. The results averaged over 30 independent
runs of 10° evaluations are plotted in Fig. 12.

For every curve, a common trend is reported. After the ini-
tialization phase, each Q individual defines a probability vector
P; which elements are all set to 1/2 and therefore Conv(0) and
Dist(0) are both equal to 0. At that particular time, the diver-
sity of the solutions sampled is maximum. Then, under the ef-
fects of selection (together with drift on neutral problems), the
Q population starts to converge with Conv(¢) > 0 and the prob-
abilistic models becomes more and more different until Dist(?)
reaches a maximum. Finally, the pairwise distance decreases
while the Q population keeps converging continuously. As ex-
pected, Sgiobal determines the amplitude of the peak of max-
imum distance between the multiple models. With Sgiobai = 1,
the models are fully synchronized (as in vQEA; ;). For both
K = 0 and K = 8, the maximum value for Dist(¢) with
Selobal = 1, is approximately 7%. This very low value means
that the multiple models represent subspaces (hypercubes) that
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differ by 7% of their bits. With higher values for Syioha1, the Q
groups are more likely to evolve towards different regions of the
search space and the maximum value for Dist(¢) increases.

When the multiple models are not fully synchronized, i.e.,
Selobal > 1, we note major discrepancies between the case K =
0 and K = 8, cf.Fig. 12(a) and (b), respectively.

For K = 0, the maximum value for Dist(¢) is around 25%
when the attractors are never synchronized (Sglobal = 0), i.e.,
when the five Q groups evolve separately. After 10° evaluations
we have Conv(t) = 1 and Dist(t) = 0, even for Sgiopar = 00.
In this situation, the five Q groups have converged towards the
same solution of the search space. We observe also a sawtooth
shape of the curves where each tooth corresponds to an episode
of synchronization of the attractors. Inasmuch as with K = 0
there is no local optima, the information carried by the attrac-
tors is not contradictory and therefore is smoothly exchanged
between the Q groups.

For K = 8, the maximum value for Dist(¢) is around 40%
for Sgiobal = 00. After 10° evaluations, Dist(t) is not equal to
zero and for Sgioha1 = 50, 100, and 500, the Q population has
not converged. The sawtooth shape is no more reported here and
instead the curves are very rugged, in particular Sgiobal = 50.
We believe that with K = 8, the information carried by attrac-
tors can be contradictory and therefore not easily exchanged be-
tween the Q groups what tends to slow down the convergence
speed of the Q population. Nevertheless, as long as the best per-
formance in terms of fitness is obtained for Sgioha1 = 100, some
information is exchanged through the synchronization process.
This is the reason why one of the role of the multiple models in
vQEA is to allow a more diverse exploration of the search space
than with a single model only.

VI. CONCLUSION

Behind the quantum metaphor, VQEA is an original ap-
proach that belongs to the class of EDAs. It clearly shares some
common features with several simple EDAs such as PBIL and
cGA, but its performance is more similar to the one of UMDA,
for example what concerns the loss of diversity, the scalability
and the robustness to fitness noise. Therefore, we believe that
VvQEA should greatly benefit from former work about simple
EDA where interactions between variables are not taken into
account.

The main specific feature of the vQEA is obviously the mul-
timodel approach. In this paper, the advantages of manipulating
several probability vectors instead of only one are empirically
demonstrated. First, vQEA is an effective algorithm that works
with fairly generic settings of the control parameters for a col-
lection of benchmark problems of various sizes, with different
levels of interactions between variables and numbers of neu-
tral dimensions. It is worth noticing that in this study, no par-
ticular efforts have been dedicated for finding the best possible
settings of VQEA but rather we used a setting directly borrowed
from previous work on QEA, which behavior is quite dissim-
ilar to VQEA, and on a different test problem. Second, the Q
population allows to buffer against a finite number of decision
errors what makes VQEA robust against fitness noise. Finally,
we have shown that vQEA can perform better than other simple
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EDAs when links are introduced between variables. Those in-
teresting results about the multimodel approach in VQEA can
be explained by two main reasons: on the one hand, an adap-
tive learning speed and on the other hand a more diverse sam-
pling of the search space than other EDAs with a single prob-
ability vector. Future work should compare the mechanisms of
existing multimodel EDAs approaches [27]—[32] to the one used
in VQEA and evaluate their relative performance empirically.

The way the Q population is structured, i.e., number and size
of the Q groups together with the local and global synchroniza-
tion periods, directly controls the adaptive learning speed and
the diversity of the solutions sampled by VQEA. To properly
choose this structure, we suggest the following approach. First
of all, the Q individuals should be fully synchronized in a Q
group (with Sjoca1 = 1) of size k in such a way that k& deter-
mines the variation of the learning speed from Af/k to Af. In
a second time, several Q groups should be introduced as long
as the problem is known to report a significant number of local
optima or similarly a significant level of dependency between
the variables. Then the global synchronization period control-
ling the diversity of the sampled solutions can be set inversely
to the size of the problem.

Despite the scalability of vQEA, the generic setting proposed
in this study is probably not optimal, and therefore a general ex-
pression should be proposed. In particular, the optimal setting of
A6 according the size of the problem is still unknown and inas-
much as Af gives the fastest learning speed, its setting should be
investigated, at least empirically, for example on a simple One
Max problem.

We have seen that one of the strength of VQEA comes from
the specialization of Q groups on diverse subspaces. Actually,
only the stochastic behavior of the Q individuals driven by fit-
ness selection makes the Q groups to converge towards different
regions of the search space. So far, even with a very low syn-
chronization frequency, we cannot guarantee the diversity of the
sampling for every problems. This question should be discussed
so that extra mechanisms for ensuring specialization can even-
tually be added.

The impact of the synchronization events on the probabilistic
models has been shown to be rather limited. Nevertheless, the
synchronization of attractors definitively helps the multiple Q
individuals to optimize nondecomposable problems. So far, the
extend to which these problems can be solved using vVQEA re-
mains unclear. From the experiments presented in this paper,
we believe that the performance of vVQEA lies somewhere in
between the one reported by the simple and the complex EDAs.
Therefore, the efficiency of VQEA in terms of exchange of in-
formation and building blocks mixing should be addressed in
future work, for example using a flexible benchmark such as
the Random Additively Decomposable Problems [56], where
the variable interactions can be explicitly controlled and addi-
tionally the global optimum is known.

APPENDIX
DESCRIPTION OF ALGORITHMS

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 6, DECEMBER 2009

2: initialize each A;

3: while not termination condition do

4: foralli € [1,p] do

5: sample 1 new solution C; from Q);
6 evaluate C;

7: if f(A;) better than f(C;) then
8 learn_model (A4;, C;, Q;)

9

end if
10: Ai — Ct
11:  end for

12:check local and global synchronization
13: end while

14:

15: function learn_model (4;, C;, Q)
16: for all j € [1, N] do

17: if A} # O/ then

18:  if A7 = 1 then

19: Qf «— rotate Qz towards AZ using Af
20: else

21: Q! — rotate Q? towards A7 using —Af
22: end if

23: end if

24: end for

Algorithm 3 PBIL

1: initialize the probabilistic model P
2: while not termination condition do
3: sample M new solutions from P into D
evaluate the elements of D
select best from D
for all j € [1,N] do
PI— PI x (1.0 — By) + best! x R
if rand(0,1] < R,, then
PI — PJ x (1.0 — Rs) + rand(0.0 or 1.0) x Ry
10: end if
11: end for
12: end while

e S

Algorithm 4 cGA

Algorithm 2 vQEA

1: initialize each Q);

1: initialize the probabilistic model P

2: while not termination condition do
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3
4:
5

6:

sample 2 new solutions from P into D
evaluate the elements of D
select winner and loser from D

learn_model (winner, loser, P)

7: end while

8:

9: function learn_model (winner, loser, P)

10: for all j € [1,N] do

11:  if winner? # loser’ then
12:  if winner’ = 1 then
13: Pi—Pi+1/n

14: else

15: Pi— Pi—1/n

16: end if

17: end if

18: end for

Algorithm 5 UMDA

1: initialize the probabilistic model P

2: while not termination condition do

3:

4
5
6:
7
8
9

sample M new solutions from P into D
evaluate the elements of D
select L = « * M solutions from D into D
forall j € [1,N] do
PJ «— compute marginal frequency at locus 7 in D,

end for

: end while
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