Publications

This page lists publications by researchers in the AUT Knowledge Engineering and Discovery Research Institute. Titles are ordered from newest to oldest within their respective categories.

Journal papers

  • N.Kasabov, Y.Tao, M.Doborjeh, E.Tu, J.Yang, Transfer Learning and Knowledge Representation of Time-Space Data Using the NeuCube Brain-Inspired Spiking Neural Network Architecture, IEEE Transacions of neural networks and learning systems, (submitted May 2021,  under review).
  • Maryam Doborjeh, Zohreh Doborjeh, Alexander Merkin, Rita Krishnamurthi, Reza Enayatollahi, Valery Feigin, Nikola Kasabov, Personalised Spiking Neural Network Models of Clinical and Environmental Factors to Predict Stroke, Cognitive Computation, COGN-D-20-00511R2, https://www.springer.com/journal/12559https://doi.org/10.1007/s12559-021-09975-xhttps://link.springer.com/content/pdf/10.1007/s12559-021-09975-x.pdf
  • Doborjeh, Z., Hemmington, N., Doborjeh, M. and Kasabov, N. (2021), "Artificial intelligence: a systematic review of methods and applications in hospitality and tourism", International Journal of Contemporary Hospitality Managementhttps://doi.org/10.1108/IJCHM-06-2021-0767
  • Maryam Doborjeh, Zohreh Doborjeh, Alexander Merkin, Rita Krishnamurthi, Reza Enayatollahi, Valery Feigin, Nikola Kasabov, Personalised Spiking Neural Network Models of Clinical and Environmental Factors to Predict Stroke, Cognitive Computation, COGN-D-20-00511R2, 26, Nov.2021, https://www.springer.com/journal/12559.
  • Dora S, Kasabov N. Spiking Neural Networks for Computational Intelligence: An Overview. Big Data and Cognitive Computing. 2021; 5(4):67. https://doi.org/10.3390/bdcc5040067
  • M. Doborjeh, Z.Doborjeh, A.Merkin, H.Bahrami, A.Sumich, R.Krishnamurthi, O. Medvedev, M.Crook-Rumsey, C.  Morgan, I.Kirk, P.Sachdev, H. Brodaty, K. Kang, W.Wen, V. Feigin, N. Kasabov, Personalised Predictive Modelling with Spiking Neural Networks of Longitudinal MRI Neuroimaging Cohort and the Case Study ofr Dementia, Neural Networks, vol.144, Dec.2021, 522-539, https://doi.org/10.1016/j.neunet.2021.09.013,
  • Doborjeh, M.; Doborjeh, Z.; Kasabov, N.; Barati, M.; Wang, G.Y. Deep Learning of Explainable EEG Patterns as Dynamic Spatiotemporal Clusters and Rules in a Brain-Inspired Spiking Neural Network. Sensors 2021, 21, 4900. https://doi.org/10.3390/s21144900
  • Patrick A Gladding, Zina Ayar, Kevin Smith, Prashant Patel, Julia Pearce, Shalini Puwakdandawa, Dianne Tarrant, Jon Atkinson, Elizabeth McChlery, Merit Hanna, Nick Gow, Hasan Bhally, Kerry Read, Prageeth Jayathissa, Jonathan Wallace, Sam Norton, Nikola K Kasabov, Cristian S Calude, Deborah Steel, Colin Mckenzie, A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data, Future Science, OA, Published Online:12 Jun 2021, https://doi.org/10.2144/fsoa-2020-0207
  • Samaneh Alsadat Saeedinia, Mohammad Reza Jahed-Motlagh1, Abbas Tafakhori, Nikola Kasabov, Design of MRI Structured Spiking Neural Networks and Learning Algorithms for Personalized Modelling, Analysis,  and Prediction of EEG Signals, Nature,  Scientific Reports, June (2021) 11:12064, https://doi.org/10.1038/s41598-021-90029-5
  • C.Tan, M.Sarlija, N.Kasabov, NeuroSense: Short-Term Emotion Recognition and Understanding Based on Spiking Neural Network Modelling of Spatio-Temporal EEG Patterns, Neurocomputing, paper No.23238, 2021, https://authors.elsevier.com/sd/article/S0925-2312(20)32010-5
  • Sanders, P.J.; Doborjeh, Z.G.; Doborjeh, M.G.; Kasabov, N.K.; Searchfield, G.D. Prediction of Acoustic Residual Inhibition of Tinnitus Using a Brain-Inspired Spiking Neural Network Model. Brain Sci. 2021, 11, 52. https://doi.org/10.3390/brainsci11010052
  • Kumarasinghe, K., Kasabov, N. & Taylor, D. Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements. Sci Rep 11, 2486 (2021). https://doi.org/10.1038/s41598-021-81805-4
  • Aiwen Jia, Zhenhong Jia, Jie Yang, and Nikola k. Kasabov, Single-image snow removal based on an attention mechanism and a generative adversarial network, IEEE Access, 6 Jan. 2021, vol.9, 12852-12860, ISSN: 2169-3536, DOI: 10.1109/ACCESS.2021.3051359.
  • Urtats Etxegarai, EvaPortillo, Jon Irazusta, LucienKoefoed, NikolaKasabov, A heuristic approach for lactate threshold estimation for training decision-making: An accessible and easy to use solution for recreational runners, European Jiournal of Operational Research, Elsevier, 291, 427-437, https://www.journals.elsevier.com/european-journal-of-operational-research.
  • Y. Xin, Z. Jia, J. Yang and N. K. Kasabov, "Specular Reflection Image Enhancement Based on a Dark Channel Prior," in IEEE Photonics Journal, vol. 13, no. 1, pp. 1-11, Feb. 2021, Art no. 6500211,  https://doi.org/10.1109/JPHOT.2021.3053906.
  • Hengyuan Liu, Guibin Lu,Yangjun Wang, Nikola Kasabov, Evolving spiking neural network model for PM2.5 hourly concentration prediction based on seasonal differences: A  case study on data from Beijing and Shanghai, Aerosol and Air Quality Research, vol.21, Issue 2, Feb. 2021, 200247, https://doi.org/10.4209/aaqr.2020.05.0247
  • Yongji Li, Rui Wu, Zhenhong Jia *, Jie Yang, Nikola Kasabov, Video Desnowing and Deraining via Saliency and Dual Adaptive Spatiotemporal Filtering, Sensors, MDPI, Nov.2021, 21, 7610. https:// doi.org/10.3390/s21227610
  • Z. Huang, Z. Jia, J. Yang and N. K. Kasabov, "An Effective Algorithm for Specular Reflection Image Enhancement," in IEEE Access, vol. 9, pp. 154513-154523, 2021, doi: 10.1109/ACCESS.2021.3128939.
  • Wei, Y.; Jia, Z.; Yang, J.; Kasabov, N.K. High-Brightness Image Enhancement Algorithm. Appl. Sci. 2021, 11, 11497,  https://doi.org/ 10.3390/app112311497
  • Shaoxia Xu, Yuan Liu, Shihua Zhou, Qiang Zhang, Nikola K. Kasabov, DNA Matrix Operation Based on the Mechanism of the DNAzyme Binding to Auxiliary Strands to Cleave the Substrate, Manuscript ID: biomolecules-1445615, Biomolecules, MDPI, 2021, 11, 1797,  https://doi.org/10.3390/biom11121797
  • Enmei Tu, Zihao Wang, Jie Yang, Nikola Kasabov, Deep Semi-Supervised Learning via Dynamic Anchor Graph Embedding in Latent Space, Neural Networks, Nov. 2021, NN5051, https://www.sciencedirect.com/science/article/pii/S0893608021004676, DOI: https://doi.org/10.1016/j.neunet.2021.11.026
  • Zohreh Doborjeh, Maryam Doborjeh, Mark Crook‐Rumsey, Tamasin Taylor, Grace Y. Wang, David Moreau, Christian Krägeloh, Wendy Wrapson, Richard J. Siegert, Nikola Kasabov, Grant Searchfield, Alexander Sumich, Interpretability of Spatiotemporal Dynamics of Brain Processes Followed by Mindfulness Intervention in a Brain‐Inspired Spiking Neural Network Architecture, Sensors, MDPI, Switzerland, December, 2020,  https://doi.org/10.3390/s20247354, https://www.mdpi.com/1424-8220/20/24/7354
  • M.Durai,  P.Sanders, Z.Doborjeh,  M.Doborjeh, N.Kasabov, G.D.Searchfield , Prediction of tinnitus masking benefit within a case series using a spiking neural network model, Progress in Brain Research, Elseviewer, 2020, https://doi.org/10.1016/bs.pbr.2020.08.003
  • Yaqiao Cheng, Zhenhong Jia, Huicheng Lai, Jie Yang, Nikola k. Kasabov, A Fast Sand-Dust Image Enhancement Algorithm by Blue Channel Compensation and Guided Image Filtering , IEEE Access, 2020, DOI10.1109/ACCESS.2020.3034151
  • Sensen Song, Zhenhong Jia, Jie Yang, and Nikola K. Kasabov, A Fast Image Segmentation Algorithm Based on Saliency Map and Neutrosophic Set Theory, IEEE Photonics journal, vol.12, No.5, 1-16, Oct.2020, Paper No. 3901016, 10.1109/JPHOT.2020.3026973.
  • Shihua Zhou, Pinyan He, Nikola Kasabov, A Dynamic DNA Color Image Encryption Method Based on SHA-512 Entropy, 2020, Entropy-936332, http://www.mdpi.com/journal/entropy/
  • J. Wang, Z. Jia, H. Lai, J. Yang and N. K. Kasabov, "A Multi-Information Fusion Correlation Filters Tracker," in IEEE Access, vol. 8, pp. 162022-162040, 2020, doi: 10.1109/ACCESS.2020.3021235.
  • Clarence Tan; Gerardo Ceballos; Nikola Kasabov; Narayan Subramaniyam, FusionSense: Emotion Classification using Feature Fusion of Multimodal Data and Deep learning in a Brain-inspired Spiking Neural Network, Sensors (ISSN 1424-8220), MDPI Publisher, September 2020
  • B.Kelsen, A.Sumich, N.Kasabov, S.Liang, G.Wang, What has social neuroscience learned from hyperscanning studies of spoken communication? A systematic review. Neuroscience&Biobehavioural Reviews, 3 September 2020, https://doi.org/10.1016/j.neubiorev.2020.09.008; https://www.sciencedirect.com/science/article/abs/pii/S0149763420305650
  • B. Yang, Z. Jia, J. Yang and N. K. Kasabov, "Video Snow Removal Based on Self-adaptation Snow Detection and Patch-based Gaussian Mixture Model," in IEEE Access, vol.8, 160188-160201, Print ISSN: 2169-3536, On-line ISSN: 2169-3536, doi: 10.1109/ACCESS.2020.3020619.
  • Tan, C., Šarlija, M. & Kasabov, N. Spiking Neural Networks: Background, Recent Development and the NeuCube Architecture. Neural Process Lett., 52, 1675-1701 (2020). https://doi.org/10.1007/s11063-020-10322-8
  • Yong Zhu, Zhenhong Jia, Jie Yang and Nikola K. Kasabov, Change Detection in Multitemporal Monitoring Images Under Low Illumination, IEEE Access, vol.8, 2020, 126700 – 126712,  DOI: https://doi.org/10.1109/ACCESS.2020.3008262
  • Zhi Li, Zhenhong Jia, Jie Yang, Nikola Kasabov, Low Illumination Video Image Enhancement, IEEE Photonics Journal, Volume 12, Number 4, August 2020 (open access), DOI: 10.1109/JPHOT.2020.3010966
  • Y.Cheng, Z.Jia, H.Lai, J.Yang, N.Kasabov, Blue Channel and Fusion for Sandstorm Image Enhancement,  IEEE Access,  Issue date December 2020, vol.8, issue 1, 66931-66940, DOI: 10.1109/ACCESS.2020.2985869
  • Z.Li, Z.Jia, L.Liu, J.Yang, N.Kasabov, A method to improve the accuracy of SAR image change detection by using an image enhancement method, ISPRS Journal of Photogrametry and Remote Sensing, Elsevier, vol.163, May 2020, 137-151.
  • Zuo, J., Jia, Z., Yang, J., Kasabov, N.Moving object detection in video sequence images based on an improved visual background extraction algorithm, Multimedia Tools and Applications, 2020, 79(39-40), pp. 29663–29684. DOI:10.1007/s11042-020-09530-0, Corpus ID: 221110480
  • Li, Z., Jia, Z., Yang, J., Kasabov, N.An efficient and high quality medical CT image enhancement algorithm, International Journal of Imaging Systems and Technology, 2020, 30(4), pp. 939–949
  • Alexander G. Merkin, Oleg N. Medvedev, Perminder S. Sachdev, Lynette Tippett, Rita Krishnamurthi, Susan Mahon, Nikola Kasabov, Priya Parmar, John Crawford, Zohreh G. Doborjeh, Maryam G. Doborjeh, Kristan Kang, Nicole A.Kochan, Helena Bahrami, Henry Brodaty, Valery L.Feigin New avenue for the geriatric depression scale: Rasch transformation enhances reliability of assessment, Journal of Affective Disorders, Volume 264, 1 March 2020, Pages 7-14, https://doi.org/10.1016/j.jad.2019.11.100
  • 2020 - Jansari, V., & Pears,R. (2020). A Positive-Confidence based approach to Classifying Imbalanced data: A Case Study on Hepatitis. American Journal of Biomedical Science & Research, 8, 457–461. https://doi.org/10.34297/AJBSR.2020.08.001319
  • 2020 - Kaushalya Kumarasinghe, Nikola Kasabov, Denise Taylor: Deep learning and deep knowledge representation in Spiking Neural Networks for Brain-Computer Interfaces. Neural Networks 121: 169-185 (2020)
  • 2020 - A. Vanarse, J.I. Espinosa-Ramos, A. Osseiran, A. Rassau, A. Kasabov, “Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification”, Sensors. May, 2020, 20(10), 2756, doi: https://doi.org/10.3390/s20102756
  • 1999 - Kasabov, N., Kilgour, R. and Sinclair, S. From hybrid adjustable neuro-fuzzy systems to adaptive connectionist-based systems for phoneme and word recognition. Fuzzy Sets and Systems, 130 (2):349-367 (1999)
  • 1999 - Kim, J.S. and Kasabov, N. HyFIS: adaptive neuro-fuzzy systems and their application to non-linear dynamical systems, Neural Networks, 12 (9) 1301-1319 (1999)
  • 1999 - Purvis, M., Kasabov, N., Benwell, G., Zhou, Q., and Zhang, F. Neuro-fuzzy methods for Environmental Modelling, System Research and Information Systems, 8 (4): 221-239 (1999)
  • 1998 - Kasabov, N. Evolving fuzzy neural networks: Theory and Applications for on-line adaptive prediction, decision making and control, Australian Journal of Intelligent Information Processing Systems, 5 (3): 154-160 (1998)
  • 1998 - Kasabov, N. Connectionist-based information systems: Methods and applications (Guest editorial), Australian Journal of Intelligent Information Processing Systems, 5 (3): 153 (1998)
  • 1998 - Kasabov, N., Kim, J.S. and Kozma, R. A Fuzzy neural network for knowledge acquisition in complex time series, International Journal of Control and Cybernetics, 4 (27): 594-611 (1998)
  • 1998 - Kasabov, N. The ECOS framework and the 'eco' training method for evolving connectionist systems. Journal of Advanced Computational Intelligence (1998) vol.2, No.6, 195-202
  • 1998 - Kasabov, N. and Kozma, R. Self-organisation and adaptation in intelligent systems - preface Journal of Advanced Computational Intelligence (1998) vol.2, No.6, 177
  • 1998 - Kasabov, N. and Kozma, R. Hybrid intelligent adaptive systems: a framework and a case study on speech recognition International Journal of Intelligent Systems 13 (6): 455-466 (1998)
  • 1998 - Kasabov, N. and Kozma, R. Introduction: Hybrid intelligent adaptive systems. International Journal of Intelligent Systems 13 (6): 453-454 (1998)
  • 1998 - Kozma, R., Kasabov, N., Kim, J. and Cohen, T. Integration of connectionist methods and chaotic time series analysis for the prediction of process data. International Journal of Intelligent Systems 13 (6): 520-538 (1998)
  • 1998 - Kasabov, N. Fuzzy neural networks, rules extraction and fuzzy synergistic reasoning. Systems Research and Information Systems 8, 45-59 (1998)
  • 1997 - Cohen, T. and Kasabov, N. Application of computational intelligence for on-line control of a Sequencing Batch Reactor (SBR) at Morrinsville Sewage Treatment Plant Water Science Technology, vol.35, No.10, 63-73 (1997)
  • 1997 - Israel, S. and Kasabov, N. Statistical, connectionist and fuzzy inference techniques for image classification. Journal of Electronic Imaging 6 (3):1-11 (1997)
  • 1997 - Kasabov, N., Kim, JS, Watts, M. and Gray, A. FuNN/2 - A fuzzy neural network architecture for adaptive learning and knowledge acquisition. Information Sciences 101(3-4): 155-175 (1997)
  • 1997 - Kasabov, N. and Hirota, K. Special issue on advanced neuro-fuzzy techniques and their applications: introduction. Information Sciences 101(3-4): 153-154 (1997)
  • 1997 - Kasabov, N. Learning strategies for modular neuro-fuzzy systems: a case study on phoneme-based speech recognition. Journal of Intelligent & Fuzzy Systems 5, 345-354 (1997)
  • 1996 - Kasabov, N. Adaptable connectionist production systems. Neurocomputing 13(2-4):95-117 (1996)
  • 1996 - Kasabov, N. Fril - fuzzy and evidential reasoning in artificial intelligence (a book review). Journal of the American Society for Information Science. 47 (10):790-791 (1996)
  • 1996 - Kasabov, N. Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems. Fuzzy Sets and Systems 82(2):2-20 (1996)
  • 1996 - Kasabov, N., Purvis, M., Zhang, F., and Benwell, G. Neuro-fuzzy engineering for spatial information processing. Australian Journal of Intelligent Information Processing Systems 3(2): 35-44 (1996)
  • 1996 - Israel, S. and Kasabov, N. Improved learning strategies for multimodular fuzzy neural network systems: A case study on image classification. Australian Journal of Intelligent Information Processing Systems 3(2): 62-70 (1996)
  • 1995 - Kasabov, N., Lavington S., Li S. and Wang C. A model for exploiting parallel associative matching in AI production systems. Knowledge-Based Systems 8 (1): 1-7 (1995)
  • 1995 - Kasabov, N. Hybrid connectionist fuzzy systems for speech recognition. Lecture Notes in Computer Science/ Artificial Intelligence 1011:19-33 (1995)
  • 1995 - Kasabov, N. Hybrid Connectionist Fuzzy Production Systems - Towards Building Comprehensive AI. Intelligent Automation and Soft Computing 1(4): 351-360 (1995)
  • 1994 - Kasabov, N. Connectionist fuzzy production systems. Lecture Notes in Computer Science/ Artificial Intelligence 847:114-128 (1994)
  • 1993 - Kasabov, N. Hybrid connectionist production systems. Journal of Systems Engineering 3(1): 15-21 (1993)
  • 1993 - Kasabov, N. and Shishkov, S. A connectionist production system with partial match and its use for approximate reasoning. Connection Science 5(3/4): 275-305 (1993)
  • 1991 - Kasabov, N. Incorporating neural networks into production systems and a practical approach towards the realisation of fuzzy expert systems. Computer Science and Informatics 21(2): 26-34 (1991)
  • 1990 - Kasabov, N. Neural networks and genetic algorithms. Avtomatica i Informatica, 8/9:51-60 (1990) (in Bulgarian)
  • 1990 - Kasabov, N. and Nikolaev, N. Parallel production systems. Avtomatica i Informatica, 7:37-45 (1990) (in Bulgarian)
  • 1985 - Kasabov, N. Functionally reconfigurable general purpose parallel machines and some image processing and pattern recognition applications. Pattern Recognition Letters, 3:215-223 (1985)
  • 1985 - Kasabov, N. A method for SIMD/MIMD functionally reconfigurable multi-microprocessor system design and parallel data exchange algorithms. Parallel Computing, 2:73-78 (1985)
  • 1983 - Kasabov, N. A general approach to parallel processing in homogeneous multi-register, multi-processor and commutation structures. Computers and Artificial Intelligence 2(4): 349-359 (1983)
  • 1983 - Kasabov, N. A multi- microprocessor system with a functional reconfiguration and parallel computations. Avtomatica i Ischislitelna Technika, 1:38-46 (1983) (in Bulgarian)
  • 1983 - Karaivanova, M., Kasabov, N. and Hristov I. Predicting the scope of effect of anti-cancer medicines. Experimentalnaja Oncologija 5(1): 51-54 (1983) (in Russian)
  • 1983 - Kasabov, N. Register commutation structures and algorithms for data exchange in multi-microprocessor systems. Avtomatica i Ischilitelna Technika, 5:17-24 (1983) (in Bulgarian)
  • 1983 - Karaivanova, M., and Kasabov, N. Experimental Tumours as Prognostic Systems for Determining the Antitumour effect, Comptes rendus de l'Academie Bulgare des Sciences 35(11): 1595 -1598 (1983)
  • 1981 - Kasabov, N., Bidjev, G. and Jechev, B. Hierarchical discrete systems and the realisation of parallel algorithms. Lecture Notes in Computer Science, 111:415-422 (1981)
  • 1981 - Karaivanova, M. and Kasabov, N. On the selection of tumour models for the screening of anti-tumour substances (AS). Comptes rendus de l'Academie Bulgare des Sciences 34(2): 299-302 (1981)
  • 1981 - Kasabov, N., Method and algorithm for permutation of data records, Systemi i Upravlenie, Bulgaria, 1: 39 - 43 (1981) (in Bulgarian)
  • 1980 - Kasabov, N. and Bidjev, G. Minimal representation of the symmetrical group close to the compact one. Cybernetika, 3:135-136 (1980) (in Russian)
  • Alexander Hui Xiang Yang, Nikola Kasabov and Yusuf Ozgur Cakmak, Machine Learning Methods for the Study of Cybersickness: A Systematic Review, Brain Informatics, Spinger-Nature, 2022
  • Iman AbouHassan, Vinayak G.M. Jagtap, Parag Kulkarni, Nikola K. Kasabov, Time Series Predictive Modelling Using Online News: A Systematic Review of Methods, Open Problems, and Future Directions, with a Reference to Financial Data, Intelligent Systems with Applications, Elsevier, 2022 (under review)
  • Qing Dong, Shihua Zhou, Qiang Zhang, Nikola K. Kasabov, A class of 5D Hamiltonian conservative hyperchaotic systems with symmetry and multistability, Nonlinear Dynamic,  2022, https://doi.org/10.1007/s11071-022-07735-6
  • Guo, Lingli, Zhenhong Jia, Jie Yang, and Nikola K. Kasabov. 2022. "Detail Preserving Low Illumination Image and Video Enhancement Algorithm Based on Dark Channel Prior" Sensors 22, no. 1: 85. https://doi.org/10.3390/s22010085
  • Chen, W.; Jia, Z.; Yang, J.; Kasabov, N.K. Multispectral Image Enhancement Based on the Dark Channel Prior and Bilateral Fractional Differential Model. Remote Sens. 2022, 14, 233. https://doi.org/ 10.3390/rs14010233

Books and book chapters

Conference outputs

  • 2015 - Angelov, P., Atanassov, K.T., Doukovska, L., Hadjiski, M., Jotsov, V., Kacprzyk, J., Kasabov, N., Sotirov, S., Szmidt, E., Zadrożny, S. (Eds.) Proceedings of the 7th IEEE International Conference Intelligent Systems IS’2014, September 24‐26, 2014, Warsaw, Poland, Volume 1: Mathematical Foundations, Theory, Analyses, Springer, 2015.
  • 2013 - Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A., Appolloni, B., & Kasabov, N. Artificial Neural Networks and Machine Learning - ICANN 2013 - 23rd International Conference on Artificial Neural Networks, Sofia, Bulgaria, September 10-13, 2013. Proceedings (Vol. 8131). V. Mladenov, P. D. Koprinkova-Hristova, G. Palm, A. E. P. Villa, B. Appolloni, & N. Kasabov (Eds.), Springer. doi:10.1007/978-3-642-40728-4
  • 2009 - M.Koeppen, N.Kasabov and G.Coghill, Advancements in Neural Information Processing,  Proc. off ICONIP 2008, Springer LNCS, vol. 5506/5507,pp.1257/1087, ISBN: 3-642-03039-4, 2009
  • 2007 - J.Si, R.Sun, D.Brown, I.King and N.Kasabov (eds) Proceedings of the Int Joint Conference on Neutal Networks – IJCNN, 12-16 August 2007, IEEE Press, 2007
  • 2007 - A.Koenig, M.Koeppen, A.Abraham, C.Igel and N.Kasabov, Proc. Seventh Int. Conference on Hybrid Intelligent Systems – HIS 2007, 17-19 Sept.2007, IEEE Comp.Soc.Press, pp.378, ISBN: 978-0-7695-2946-2
  • 2006 - P.Angelov, D.Filev, N.Kasabov, O.Cordon (eds) Proc. 2006 Int. Symp. Evolving Fuzzy Systems, Lancaster, UK, IEEE Press, 2006
  • 2004 - N. Pal, Nikola Kasabov et al, (eds) Proc. of the Int. Conf. on Neuro Information Processing, Calcutta, November 2004, Springer Verlag, Vol. 3316, ICONIP’2004, Heidelberg, 2004
  • 2003 - Kasabov, Nik, Zeke S.H. Chan, Proceedings of the Conference on Neuro-Computing and Evolving Intelligence, November 2003, Auckland University of Technology, (2003) 122 pages
  • 2003 - Ken Chen, Shu Heng Chen, Heng Da Cheng, David K.Y. Chiu, Sanjoy Das, Richard Duro, Zhen Jiang, Nik Kasabov, Etiene Kerre, Hong Va Leong, Qing Li,, Mi Lu, Manuel Grana Romay, Don Ventura, Paul P. Wang, Jie Wu, Proceedings of the 7th Joint Conference on Information Sciences, JCIS 2003 1780 pages
  • 2002 - Kasabov, N. ed. Proceedings of the Neurocomputing Colloquium and Workshop, October, Auckland University of Technology, (2002) 85 pages
  • 2001 - Kasabov, N., and B.Woodford, (eds) Proceedings of the ANNES’2001 conference on Artifical Neural Networks and Experts Systems, Dunedin, Nov. 2001, University of Otago (2001)
  • 1999 - Gedeon, T., P.Wong, S.Halgamuge, N.Kasabov, D.Nauck, and K.Fukushima (eds) ICONIP’99-Proceedings of the 6th International Conference on Neural Information Processing, 16-20 November 1999, IEEE Press (1999), Vol I & II, 842 pages
  • 1999 - Kasabov, N., and K.Ko, (eds) Emerging Knowledge Engineering and Connectionist-based Information Systems, Proceedings of the ICONIP/ANZIIS/ANNES’99 Workshop "Future directions for intelligent systems and information sciences, Dunedin, 22-23 Nov.1999, University of Otago (1999)
  • 1998 - Kasabov, N., Kozma, R., O’Shea, R., Ko, K., Coghill, G., and Gedeon, T., (eds) Advances in Connectionist-Based Information Systems Proceedings of the International Conference on Neural Information Processing ICONIP’97, Springer Verlag Singapore (1998), 1550 pages
  • 1993 - Kasabov, N. (ed.) The First New Zealand International Conference on Artificial Neural Networks and Expert Systems, Proceedings of ANNES'93 Dunedin, IEEE Computer Society Press (1993) 346 pages

Patents and reports

  • 2003 - N.Kasabov, M. Futschik, M.Sullivan, A.Reeve, A method and system for integrating microarray gene expression data and clinical information, Patent No. NZ03/00045, New Zealand dated 17/03/2003
  • 2003 - A.Ghobakglou and N.Kasabov, Adaptive speech recognition, Provisional patent application, submitted July 2003, New Zealand
  • 2002 - N.Kasabov, M. Futschik, M.Sullivan, A.Reeve, A method and system for using microarray gene expression data and clinical information, Preliminary application, 2002, USA
  • 2002 - A.Reeve, M. Futschik, M.Sullivan, N.Kasabov, P. Guildford, Medical Applications of Adaptive Learning Systems, Preliminary Patent Application, February 2002, New Zealand
  • 2001 - Kasabov, N., Adaptive learning system and method, WO 01/78003, under PCT (publication date 20.04.2001)
  • 2001-  Kasabov, N., and Abdulla, W., Method and system for robust speech recognition, ref. No. 25675/25688, New Zealand, PCT
  • 2000 - "System and Method for Video Production" Kellock P., Subramaniam S., Padmanabhan R., Goh L., US Application No. 09/509,280 filed 27 March 2000
  • 1999 - "System and Method for Video Production", Kellock P., Subramaniam S., Padmanabhan R., Goh L., PCT/SG99/00142, filed 16 Dec 1999.

Our research groups

Within our institute we have a number of research groups that explore the use cases of the NeuCube across a variety of areas.

Find out more

Meet the team

Find out about the individual expertise of our team members at the AUT Knowledge Engineering and Discovery Research Institute.

Our people